Технические характеристики стеклопластиковой полимерной арматуры
Стеклопластиковая арматура —
технические характеристики
Из статьи вы узнаете о десяти важных технических параметрах стеклопластиковой арматуры — что означает каждый из них, какой показатель ему соответствует.
Стеклопластиковая арматура — наиболее выгодная по соотношению «цена-качество» разновидность композитной арматуры. В мире её аналоги используют ещё с 30-х годов, в СССР этот термин впервые был озвучен в 40-х годах прошлого века. Разбираем подробно технические характеристики этого вида полимерной арматуры.
Содержание:
- Про АКС
- Процесс производства
- Вес
- Разрывная прочность
- Модуль упругости
- Относительное удлинение
- Плотность
- Линейный коэффициент теплового расширения
- Теплопроводность
- Радиопрозрачность
- Коррозийная стойкость
- Гигиенические свойства
Нет времени читать всю статью? Сохраните её в социальных сетях или отправьте себе в мессенджер!
Стеклопластиковая арматура использовалась ещё в советские годы. Правда, как это часто случалось с инновационными материалами (например, арболитовыми блоками) с распадом СССР тема сошла на «нет» и начала возраждаться только в начале двухтысячных годов.
Применение арматуры из стекловолокна довольно широко — армирование фундаментов, стяжки, иных бетонных конструкций, в качестве гибких связей, шпалер и приштамбовых кольев, ограждений, а также в производстве многослойных стеновых блоков для скрепления слоёв между собой. Её применяют, во-первых, для удешевления строительства, а во-вторых, из-за многочисленного списка преимуществ по сравнению с металлом.
Пример применения стеклоарматуры для армирования стяжки пола
Использование композитной стеклопластиковой арматуры регламентируется сводом правил СП 295.1325800.2017.
Как производят стеклопластиковую арматуру
Полимерная арматура изготавливается из тонких нитей стекловолокна, связывающихся в единый стержень при помощи связующего вещества — компаунда на основе эпоксидной смолы. На поверхность стержня наносятся ребра для лучшего сцепления с бетоном.
Использование стекловолокна и обуславливает высокую прочность композитных армирующих материалов. Дело в том, что массивное стекло само по себе хрупкое. А вот тонкая стеклонить превосходит по прочности на разрыв большинство имеющихся в природе материалов. Её прочность достигает 2,4 гигапаскалей. Об этом писал в своей книге советский инженер Николай Фролов.
Пропитка стеклонити компаундом на начальном этапе производственного цикла
Производство стеклопластиковой арматуры — сложный технологический процесс, в котором любая мелочь имеет значение. Ошибки, допущенные при изготовлении, сказываются на качестве арматуры.
Какие ошибки допускают производители стеклопластиковой композитной арматуры читайте в нашем обзоре. Вам будет полезна эта статья!
Технические характеристики арматуры из стекловолокна
Рассмотрим 10 характеристик, на которые могут ориентироваться покупатели при покупке стеклопластиковой арматуры. Постараемся рассказать на что влияет та или иная характеристика и, конечно, дадим значения на примере нашего товара.
Вес арматуры сказывается на общем весе строения, а также затратах на транспортировку. Стеклоарматура в несколько раз легче металлической. Соответственно, если закладывать её в кладку или в стяжку пола, то нагрузка на фундамент будет меньше. Это экономия на фундаменте.
Перевозить такую арматуру тоже проще. Во-первых, из-за формы выпуска в бухтах, во-вторых из-за лёгкого веса. Если для перевозки стальной арматуры понадобится фура, то в случае со стеклопластиковой будет достаточно и «Газели».
В эту небольшую машину умещается 16 км стеклопластиковой арматуры
Сколько весит арматура?
Вес одного метра стеклопластиковой арматуры в зависимости от диаметра в граммах (в скобках вес стальной арматуры А3):
- Ø4 — 25
- Ø6 — 56 (222)
- Ø8 — 94 (395)
- Ø10 — 144 (617)
- Ø12 — 198 (888)
- Ø14 — 280 (1210)
- Ø16 — 460 (1580)
- Ø18 — 560 (2000)
- Ø20 — 630 (2470)
- Ø22 — 730 (2980)
- Ø24 — 850 (3850)
Разрывная прочность
Арматура в бетонных конструкциях работает на изгиб и разрыв (в зависимости от типов конструкций).
Разрывная нагрузка — максимальное усилие, которое выдерживает материал до разрушения и характеризующее его способность воспринимать нагрузку. Разрывная прочность стеклопластиковой арматуры в несколько раз выше, чем у стальной. Поэтому, для конструкций, в которых арматура будет работать на разрыв, она подходит лучше.
Какая прочность у стеклопластиковой арматуры?
Предел прочности при растяжении АКС арматуры составляет 1189 МПа. Для сравнения — у стальной арматуры этот показатель равен 390 МПа.
А вот если делать расчёт для конструкций, работающих на прогиб, то замена действует в обратную сторону. Об этом недостатке в следующем пункте.
Модуль упругости стеклопластиковой арматуры
Определение из Википедии: модуль упругости характеризует способность материала упруго деформироваться (т.е. не постоянно) при приложении к нему какой-либо силы. Проще говоря, от модуля упругости зависит раскрытие микротрещин бетонной конструкции.
По этому показателю стальная арматура превосходит неметаллическую. Армирование препятствует растрескиванию и обвалу всей конструкции. Соответственно, от модуля упругости зависит величина потенциальных трещин. НО! Расчёты по данной характеристике производятся для конструкций, который будут работать на прогиб. Это:
- балки прямоугольного или таврового сечения;
- бетонные плиты перекрытия;
- оконные и дверные перемычки.
Для этих конструкций с учётом модуля упругости следует закладывать композитную арматуру большего диаметра ,чем металлическую.
Какой модуль упругости у арматуры?
Модуль упругости стальной арматуры — 200 000 МПа, стеклоарматуры — 55 000 МПа.
Относительное удлинение
Относительное удлинение после разрыва обозначается в процентах. Характеристика выражает изменение расчётной длины стержня арматуры, в пределах которой произошёл разрыв, выраженной в процентах от первоначальной длины. Иными словами этот показатель характеризует удлинение рабочей части стержня после разрушения к начальной расчётной длине. Значение относительного удлинения определяют при испытаниях на разрыв.
Простыми словами, эта характеристика влияет на образование трещин в бетонной конструкции. Чем ниже этот показатель, тем больше вероятность избежать трещин!
Какова величина относительного удлинения арматуры?
Относительное удлинение стеклопластикового стержня — 2,2%, стального стержня — 25%.
Плотность
Плотностью называют отношение массы тела к занимаемому этим телом объёму. Также её называют удельным весом. Обозначается как количество килограмм или тонн на один метр в кубе.
Плотность влияет на вес изделия и иногда может помочь определить качество стеклопластиковой арматуры. Например, арматура диаметром 12 мм производства «Композит 21» весит 200 гр/метр. Это примерный вес АСК арматуры хорошего качества. Если же вам предложили товар по нереально низкой цене, уточните у продавца сколько он весит. Например, в нашей практике был случай, когда заказчику предложили 12-миллиметровую арматуру по очень низкой цене. А позже выяснилось, что метр этой арматуры весит на 20% меньше. Соответственно, это материал меньшей плотности, прочностные характеристики которого будут ниже.
Какая плотность у арматуры?
Показатель плотности стеклопластиковой арматуры — 2 т/м3, стальной арматуры — 7,85 т/м3.
Линейный коэффициент теплового расширения
Эта характеристика показывает насколько будет удлиняться материал при увеличении его температуры на один градус. При изменениях температуры в пределах 80 °C (например, от — 40 °C до + 40 °C) расширение бетона может достигать 0,8 мм на метр. Поэтому, температурные колебания могут вызвать растрескивание бетона с жёстким наполнителем из-за разных коэффициентов линейного расширения у самого бетона и наполнителя.
В этом заключается ещё одно преимущество стеклопластиковой арматуры перед металлической. Дело в том, что тепловой коэффициент бетона и композитной арматуры примерно одинаков, поэтому бетон, армированный композитом будет меньше подвержен отрицательному влиянию температурных колебаний.
Какой коэффициент линейного расширения у стеклопластиковой арматуры?
Коэффициент для стеклопластиковой арматуры — 9-12 ax10-6/°C, для стальной арматуры — 13-15 ax10-6/°C.
Теплопроводность
Теплопроводностью называют способность тел переносить энергию (тепло) от более нагретых частей тела к менее нагретым. По другому — это количественная характеристика способности тела проводить тепло. Количественно эта способность выражается коэффициентом теплопроводности. Чем меньше значение коэффициента, тем ниже склонность материала к переводу тепла.
Например, если рассматривать стену дома, то использование при её строительстве материалов с высокой теплопроводностью приведёт к передаче тепла из нагретого помещения (т.е. вашего дома) в менее нагретое (т.е. на улицу). Грубо говоря, зимой вы будете топить улицу. А летом наоборот. Таким образом, при строительстве из материалов с низкой теплопроводностью в доме будет тепло зимой и прохладно летом.
Армирование цоколя из строительных блоков стеклопластиковой арматурой
Стеклопластиковая арматура (либо сетка), которую закладывают в стены при армировании кладки, отличается меньшей теплопроводностью в отличие от стальной. Она не образует «мостиков холода», через которые тепло будет покидать ваше жильё.
Какой коэффициент теплопроводности у арматуры?
Коэффициент теплопроводности стеклопластиковой арматуры — 0,35 Вт/(м°С), а у стальной арматуры — 46 Вт/(м°С).
Также стеклопластиковая арматура активно используется в качестве гибких связей в многослойных стенах.
“Низкая теплопроводность композитных стержней предопределила их эффективное использование в качестве связей многослойных стеновых конструкций. По результатам сравнительных испытаний трехслойных стеновых панелей на сдвиг слоев относительно друг друга, в которых использованы стеклопластиковые и металлические связи, установлено, что стеклопластиковая арматура обеспечивает требуемый уровень жесткости и прочности, предъявляемый к гибким связям.»
— Источник: Грановский А. В., Хактаев С.С. Применение стеклопластиковой арматуры в качестве гибких связей в трехслойных стеновых панелях // Промышленное и гражданское строительство. 2013. № 10. С. 84–87
Радиопрозрачность и диэлектрические свойства
Этот параметр важен прежде всего в области электроэнергетического строительства. Стеклопластиковая арматура является диэлектриком, поэтому не создаёт помех для работы сложных электрических приборов. Именно по этой причине композитная арматура применялась при строительстве Центра квантовых нанотехнологий в Канаде или Института изучения твёрдых тел имени Макса Планка в Германии.
Стеклопластиковая арматура не создаёт радиопомех, в отличие от металлических контуров из стальной арматуры. Подробнее об электротехнических свойствах арматуры из стекловолокна читайте в другой статье.
Коррозийная стойкость
Коррозией называют самопроизвольное разрушение металлов, а также сплавов в результате воздействия окружающей среды. В отношении неметаллических материалов такой термин употреблять не принято (правильнее использовать термин «старение»). Но при ужесточении эксплуатационных условий полимерные материалы тоже склонны ухудшаться под воздействием среды. Поэтому, термин «коррозия» употребляют и в отношении стеклопластиковой арматуры.
Если же сравнивать композитную и стальную арматуру, то первая обладает высокой коррозийной стойкостью (в том числе, от воздействия как жидкостной, так и химической коррозии), а вторая — низкой.
На что влияет эта характеристика? На долговечность. Срок службы стеклопластиковой арматуры больше, чем у металлической.
“В 1975 и 1984 годах стеклопластиковая арматура диаметром 6 мм была применена в строительстве опытных преднапряженных конструкций мостов. Прочность арматуры на растяжение составляла 1200 МПа, однако, учитывая низкий модуль упругости (30-40 ГПа), в поперечном сечении балок располагались стержни из алюмоборсиликатного волокна диаметром 10 мкм, количество связующего не превышало 20 % по массе. В 2006 году сотрудниками НИИЖБ им. Гвоздева было изучено состояние некоторых таких конструкций. Обследование опытных пролетных строений не выявило серьезных нарушений и подтвердило необходимость проведения дальнейших более детальных экспериментов с получением статистических данных по изменению сцепления с бетоном, прочностным и деформативным характеристикам полимеркомпозитной арматуры, в том числе длительной прочности.»
— Источник: Вестник БГТУ им. В.Г. Шухова , №3, 2017
Экологическая безопасность
ГОСТ 31938-2012 регламентирует гигиенические требования к композитной арматуре а также всем её видам, включая стеклопластиковую. АКП не должна выделять вредные и токсичные вещества в концентрациях угрожающих здоровью человека, а также оказывать вредное воздействие на окружающую среду.
По требованиям нормативного документа концентрация фенола и формальдегида не должна превышать 0,003 мг/м3, концентрация толуола не должна превышать 0,600 мг/м3, уровень запаха не более 2 баллов. А эффективная удельная активность природных радионуклидов — не более 370 Бк/кг.
Безопасна ли стеклопластиковая арматура?
Гигиеническая характеристика стеклопластиковой арматуры согласно результатам санитарно-эпидемиологической экспертизы:
- концентрация фенола: <0,001
- концентрация формальдегида: <0,001
- концентрация толуола: <0,16
- эффективная удельная активность природных радионуклидов: 128±50
- уровень запаха: 1 балл.
То есть, все показатели в пределах нормы. По крайней мере, у нашей компании.
Сертификат соответствия санитарным нормам
Гигиенические характеристики стеклопластиковой арматуры
Заключение санитарно- эпидемиологической службы
Читайте также:
Защитный слой бетона
Армирование стен
Опыт применения композитной стеклопластиковой арматуры за рубежом
Технические характеристики стеклопластиковой полимерной арматуры
Стеклопластиковая арматура —
технические характеристики
Из статьи вы узнаете о десяти важных технических параметрах стеклопластиковой арматуры — что означает каждый из них, какой показатель ему соответствует.
Стеклопластиковая арматура — наиболее выгодная по соотношению «цена-качество» разновидность композитной арматуры. В мире её аналоги используют ещё с 30-х годов, в СССР этот термин впервые был озвучен в 40-х годах прошлого века. Разбираем подробно технические характеристики этого вида полимерной арматуры.
Содержание:
- Про АКС
- Процесс производства
- Вес
- Разрывная прочность
- Модуль упругости
- Относительное удлинение
- Плотность
- Линейный коэффициент теплового расширения
- Теплопроводность
- Радиопрозрачность
- Коррозийная стойкость
- Гигиенические свойства
Нет времени читать всю статью? Сохраните её в социальных сетях или отправьте себе в мессенджер!
Стеклопластиковая арматура использовалась ещё в советские годы. Правда, как это часто случалось с инновационными материалами (например, арболитовыми блоками) с распадом СССР тема сошла на «нет» и начала возраждаться только в начале двухтысячных годов.
Применение арматуры из стекловолокна довольно широко — армирование фундаментов, стяжки, иных бетонных конструкций, в качестве гибких связей, шпалер и приштамбовых кольев, ограждений, а также в производстве многослойных стеновых блоков для скрепления слоёв между собой. Её применяют, во-первых, для удешевления строительства, а во-вторых, из-за многочисленного списка преимуществ по сравнению с металлом.
Пример применения стеклоарматуры для армирования стяжки пола
Использование композитной стеклопластиковой арматуры регламентируется сводом правил СП 295.1325800.2017.
Как производят стеклопластиковую арматуру
Полимерная арматура изготавливается из тонких нитей стекловолокна, связывающихся в единый стержень при помощи связующего вещества — компаунда на основе эпоксидной смолы. На поверхность стержня наносятся ребра для лучшего сцепления с бетоном.
Использование стекловолокна и обуславливает высокую прочность композитных армирующих материалов. Дело в том, что массивное стекло само по себе хрупкое. А вот тонкая стеклонить превосходит по прочности на разрыв большинство имеющихся в природе материалов. Её прочность достигает 2,4 гигапаскалей. Об этом писал в своей книге советский инженер Николай Фролов.
Пропитка стеклонити компаундом на начальном этапе производственного цикла
Производство стеклопластиковой арматуры — сложный технологический процесс, в котором любая мелочь имеет значение. Ошибки, допущенные при изготовлении, сказываются на качестве арматуры.
Какие ошибки допускают производители стеклопластиковой композитной арматуры читайте в нашем обзоре. Вам будет полезна эта статья!
Технические характеристики арматуры из стекловолокна
Рассмотрим 10 характеристик, на которые могут ориентироваться покупатели при покупке стеклопластиковой арматуры. Постараемся рассказать на что влияет та или иная характеристика и, конечно, дадим значения на примере нашего товара.
Вес арматуры сказывается на общем весе строения, а также затратах на транспортировку. Стеклоарматура в несколько раз легче металлической. Соответственно, если закладывать её в кладку или в стяжку пола, то нагрузка на фундамент будет меньше. Это экономия на фундаменте.
Перевозить такую арматуру тоже проще. Во-первых, из-за формы выпуска в бухтах, во-вторых из-за лёгкого веса. Если для перевозки стальной арматуры понадобится фура, то в случае со стеклопластиковой будет достаточно и «Газели».
В эту небольшую машину умещается 16 км стеклопластиковой арматуры
Сколько весит арматура?
Вес одного метра стеклопластиковой арматуры в зависимости от диаметра в граммах (в скобках вес стальной арматуры А3):
- Ø4 — 25
- Ø6 — 56 (222)
- Ø8 — 94 (395)
- Ø10 — 144 (617)
- Ø12 — 198 (888)
- Ø14 — 280 (1210)
- Ø16 — 460 (1580)
- Ø18 — 560 (2000)
- Ø20 — 630 (2470)
- Ø22 — 730 (2980)
- Ø24 — 850 (3850)
Разрывная прочность
Арматура в бетонных конструкциях работает на изгиб и разрыв (в зависимости от типов конструкций). Предел прочности на разрыв — важнейшая техническая характеристика арматуры, определяющая её максимальное растяжение во время критических нагрузок.
Разрывная нагрузка — максимальное усилие, которое выдерживает материал до разрушения и характеризующее его способность воспринимать нагрузку. Разрывная прочность стеклопластиковой арматуры в несколько раз выше, чем у стальной. Поэтому, для конструкций, в которых арматура будет работать на разрыв, она подходит лучше.
Какая прочность у стеклопластиковой арматуры?
Предел прочности при растяжении АКС арматуры составляет 1189 МПа. Для сравнения — у стальной арматуры этот показатель равен 390 МПа.
Исходя из этого и появилась таблица равнопрочной замены полимерной арматуры на металл. То есть, вместо металла 12-го диаметра применяется стеклоарматура 8-го диаметра.
А вот если делать расчёт для конструкций, работающих на прогиб, то замена действует в обратную сторону. Об этом недостатке в следующем пункте.
Модуль упругости стеклопластиковой арматуры
Определение из Википедии: модуль упругости характеризует способность материала упруго деформироваться (т.е. не постоянно) при приложении к нему какой-либо силы. Проще говоря, от модуля упругости зависит раскрытие микротрещин бетонной конструкции.
По этому показателю стальная арматура превосходит неметаллическую. Армирование препятствует растрескиванию и обвалу всей конструкции. Соответственно, от модуля упругости зависит величина потенциальных трещин. НО! Расчёты по данной характеристике производятся для конструкций, который будут работать на прогиб. Это:
- балки прямоугольного или таврового сечения;
- бетонные плиты перекрытия;
- оконные и дверные перемычки.
Для этих конструкций с учётом модуля упругости следует закладывать композитную арматуру большего диаметра ,чем металлическую.
Какой модуль упругости у арматуры?
Модуль упругости стальной арматуры — 200 000 МПа, стеклоарматуры — 55 000 МПа.
Относительное удлинение
Относительное удлинение после разрыва обозначается в процентах. Характеристика выражает изменение расчётной длины стержня арматуры, в пределах которой произошёл разрыв, выраженной в процентах от первоначальной длины. Иными словами этот показатель характеризует удлинение рабочей части стержня после разрушения к начальной расчётной длине. Значение относительного удлинения определяют при испытаниях на разрыв.
Простыми словами, эта характеристика влияет на образование трещин в бетонной конструкции. Чем ниже этот показатель, тем больше вероятность избежать трещин!
Какова величина относительного удлинения арматуры?
Относительное удлинение стеклопластикового стержня — 2,2%, стального стержня — 25%.
Плотность
Плотностью называют отношение массы тела к занимаемому этим телом объёму. Также её называют удельным весом. Обозначается как количество килограмм или тонн на один метр в кубе.
Плотность влияет на вес изделия и иногда может помочь определить качество стеклопластиковой арматуры. Например, арматура диаметром 12 мм производства «Композит 21» весит 200 гр/метр. Это примерный вес АСК арматуры хорошего качества. Если же вам предложили товар по нереально низкой цене, уточните у продавца сколько он весит. Например, в нашей практике был случай, когда заказчику предложили 12-миллиметровую арматуру по очень низкой цене. А позже выяснилось, что метр этой арматуры весит на 20% меньше. Соответственно, это материал меньшей плотности, прочностные характеристики которого будут ниже.
Какая плотность у арматуры?
Показатель плотности стеклопластиковой арматуры — 2 т/м3, стальной арматуры — 7,85 т/м3.
Линейный коэффициент теплового расширения
Эта характеристика показывает насколько будет удлиняться материал при увеличении его температуры на один градус. При изменениях температуры в пределах 80 °C (например, от — 40 °C до + 40 °C) расширение бетона может достигать 0,8 мм на метр. Поэтому, температурные колебания могут вызвать растрескивание бетона с жёстким наполнителем из-за разных коэффициентов линейного расширения у самого бетона и наполнителя.
В этом заключается ещё одно преимущество стеклопластиковой арматуры перед металлической. Дело в том, что тепловой коэффициент бетона и композитной арматуры примерно одинаков, поэтому бетон, армированный композитом будет меньше подвержен отрицательному влиянию температурных колебаний.
Какой коэффициент линейного расширения у стеклопластиковой арматуры?
Коэффициент для стеклопластиковой арматуры — 9-12 ax10-6/°C, для стальной арматуры — 13-15 ax10-6/°C.
Теплопроводность
Теплопроводностью называют способность тел переносить энергию (тепло) от более нагретых частей тела к менее нагретым. По другому — это количественная характеристика способности тела проводить тепло. Количественно эта способность выражается коэффициентом теплопроводности. Чем меньше значение коэффициента, тем ниже склонность материала к переводу тепла.
Например, если рассматривать стену дома, то использование при её строительстве материалов с высокой теплопроводностью приведёт к передаче тепла из нагретого помещения (т.е. вашего дома) в менее нагретое (т.е. на улицу). Грубо говоря, зимой вы будете топить улицу. А летом наоборот. Таким образом, при строительстве из материалов с низкой теплопроводностью в доме будет тепло зимой и прохладно летом.
Армирование цоколя из строительных блоков стеклопластиковой арматурой
Стеклопластиковая арматура (либо сетка), которую закладывают в стены при армировании кладки, отличается меньшей теплопроводностью в отличие от стальной. Она не образует «мостиков холода», через которые тепло будет покидать ваше жильё.
Какой коэффициент теплопроводности у арматуры?
Коэффициент теплопроводности стеклопластиковой арматуры — 0,35 Вт/(м°С), а у стальной арматуры — 46 Вт/(м°С).
Также стеклопластиковая арматура активно используется в качестве гибких связей в многослойных стенах.
“Низкая теплопроводность композитных стержней предопределила их эффективное использование в качестве связей многослойных стеновых конструкций. По результатам сравнительных испытаний трехслойных стеновых панелей на сдвиг слоев относительно друг друга, в которых использованы стеклопластиковые и металлические связи, установлено, что стеклопластиковая арматура обеспечивает требуемый уровень жесткости и прочности, предъявляемый к гибким связям.»
— Источник: Грановский А. В., Хактаев С.С. Применение стеклопластиковой арматуры в качестве гибких связей в трехслойных стеновых панелях // Промышленное и гражданское строительство. 2013. № 10. С. 84–87
Радиопрозрачность и диэлектрические свойства
Этот параметр важен прежде всего в области электроэнергетического строительства. Стеклопластиковая арматура является диэлектриком, поэтому не создаёт помех для работы сложных электрических приборов. Именно по этой причине композитная арматура применялась при строительстве Центра квантовых нанотехнологий в Канаде или Института изучения твёрдых тел имени Макса Планка в Германии.
Стеклопластиковая арматура не создаёт радиопомех, в отличие от металлических контуров из стальной арматуры. Подробнее об электротехнических свойствах арматуры из стекловолокна читайте в другой статье.
Коррозийная стойкость
Коррозией называют самопроизвольное разрушение металлов, а также сплавов в результате воздействия окружающей среды. В отношении неметаллических материалов такой термин употреблять не принято (правильнее использовать термин «старение»). Но при ужесточении эксплуатационных условий полимерные материалы тоже склонны ухудшаться под воздействием среды. Поэтому, термин «коррозия» употребляют и в отношении стеклопластиковой арматуры.
Если же сравнивать композитную и стальную арматуру, то первая обладает высокой коррозийной стойкостью (в том числе, от воздействия как жидкостной, так и химической коррозии), а вторая — низкой.
На что влияет эта характеристика? На долговечность. Срок службы стеклопластиковой арматуры больше, чем у металлической.
“В 1975 и 1984 годах стеклопластиковая арматура диаметром 6 мм была применена в строительстве опытных преднапряженных конструкций мостов. Прочность арматуры на растяжение составляла 1200 МПа, однако, учитывая низкий модуль упругости (30-40 ГПа), в поперечном сечении балок располагались стержни из алюмоборсиликатного волокна диаметром 10 мкм, количество связующего не превышало 20 % по массе. В 2006 году сотрудниками НИИЖБ им. Гвоздева было изучено состояние некоторых таких конструкций. Обследование опытных пролетных строений не выявило серьезных нарушений и подтвердило необходимость проведения дальнейших более детальных экспериментов с получением статистических данных по изменению сцепления с бетоном, прочностным и деформативным характеристикам полимеркомпозитной арматуры, в том числе длительной прочности.»
— Источник: Вестник БГТУ им. В.Г. Шухова , №3, 2017
Экологическая безопасность
ГОСТ 31938-2012 регламентирует гигиенические требования к композитной арматуре а также всем её видам, включая стеклопластиковую. АКП не должна выделять вредные и токсичные вещества в концентрациях угрожающих здоровью человека, а также оказывать вредное воздействие на окружающую среду.
По требованиям нормативного документа концентрация фенола и формальдегида не должна превышать 0,003 мг/м3, концентрация толуола не должна превышать 0,600 мг/м3, уровень запаха не более 2 баллов. А эффективная удельная активность природных радионуклидов — не более 370 Бк/кг.
Безопасна ли стеклопластиковая арматура?
Гигиеническая характеристика стеклопластиковой арматуры согласно результатам санитарно-эпидемиологической экспертизы:
- концентрация фенола: <0,001
- концентрация формальдегида: <0,001
- концентрация толуола: <0,16
- эффективная удельная активность природных радионуклидов: 128±50
- уровень запаха: 1 балл.
То есть, все показатели в пределах нормы. По крайней мере, у нашей компании.
Сертификат соответствия санитарным нормам
Гигиенические характеристики стеклопластиковой арматуры
Заключение санитарно- эпидемиологической службы
Читайте также:
Защитный слой бетона
Армирование стен
Опыт применения композитной стеклопластиковой арматуры за рубежом
Прочность — преимущества композитов
Композиты — одни из самых прочных материалов. Если учесть плотность материала, композиты намного прочнее большинства других строительных материалов. Неудивительно, что они являются предпочтительным материалом для всего, от самолетов до автомобилей.
Комбинируя специальные смолы и армирующие материалы – а их много – можно настроить рецептуру в соответствии с конкретными требованиями к прочности для любого применения. Например, вы можете изменить соотношение смолы и армирования или ориентировать волокна в одном направлении или в разных направлениях.
Композиты анизотропны, то есть свойства материала изменяются в зависимости от размещения и количества слоев армирующих материалов – волокон. Это обеспечивает инженерную гибкость, поэтому дизайнеры могут адаптировать свойства конечного продукта. Когда дело доходит до прочности, есть четыре основных вида, которые влияют на конструкцию конструкции: удельная прочность, прочность на растяжение, прочность на сдвиг и прочность на сжатие.
Отношение прочности материала к весу, также называемое удельной прочностью, представляет собой сравнение его прочности с его весом. Прочность материала, деленная на его плотность, даст вам удельную прочность.
Инженеры, дизайнеры и проектировщики все чаще ищут материалы с высокой удельной прочностью. Некоторые материалы очень прочные и тяжелые, например сталь. Другие материалы могут быть прочными и легкими, например, бамбуковые шесты. Композиты могут быть как прочными, так и легкими. Поскольку они имеют очень высокое отношение прочности к весу, композиты являются востребованным материалом для приложений, где вес имеет первостепенное значение, таких как самолеты и автомобили. Более легкие автомобили потребляют меньше топлива.
Прочность на растяжение относится к величине напряжения, которое может выдержать материал, прежде чем он сломается, расколется, деформируется или иным образом выйдет из строя. Одной из мер прочности на растяжение является прочность на изгиб — способность материала или конструкции выдерживать изгиб. Прочность на растяжение и изгиб являются важными измерениями для инженеров и проектировщиков. Представьте, что вы строите настил моста или потолок, не зная, какое усилие он может выдержать, прежде чем рухнет?
Прочность на растяжение зависит от материала и измеряется в мегапаскалях (МПа). Например, предел прочности при растяжении стали составляет от 400 до 690 МПа, а предел прочности полимерных композитов, армированных углеродным волокном, — от 1200 до 2410 МПа, в зависимости от ориентации волокон и других конструктивных факторов.
Прочность на сдвиг описывает, насколько хорошо материал может сопротивляться деформации при смещении или скольжении слоев. Важно знать максимальное напряжение сдвига (или силу на единицу площади), которое может выдержать материал до разрушения. Это позволяет инженерам и проектировщикам узнать, какой вес — или нагрузку — может выдержать конструкция, и что может произойти с конструкцией, когда силы приложены в разных направлениях.
Прочность на сдвиг в композитах зависит от состава и конструкции. Композиты могут быть спроектированы таким образом, чтобы касательные напряжения были ориентированы в плоскости, поперек плоскости или по слоям (межслойные). Существует несколько способов управления свойствами сдвига, включая ориентацию волокон, последовательность слоев, тип и объем используемых волокон, тип и плотность материалов сердцевины и многое другое.
Прочность на сжатие показывает, как ведет себя материал, когда он сжимается или сплющивается под давлением. Некоторые материалы ломаются или разрушаются, когда достигают своего предела прочности на сжатие, в то время как другие деформируются безвозвратно.
Такие материалы, как бетон и керамика, обычно имеют более высокую прочность на сжатие, но более низкую прочность на растяжение. И наоборот, композиты обычно имеют более высокую прочность на растяжение, чем прочность на сжатие. Композитные материалы, нагруженные на сжатие, могут деформироваться, перегнуться или сломаться. Вот почему важно оценить сжимающую нагрузку для конкретной комбинации волокна и смолы, выбранной для конкретного применения, и соответствующим образом скорректировать рецептуру.
Армирование — Откройте для себя композиты
Арматура может быть ориентирована для обеспечения индивидуальных свойств в направлении нагрузок, действующих на конечный продукт. Многие материалы способны армировать полимеры. Стекловолокна составляют более 90 процентов волокон, используемых в армированных пластмассах, потому что они недороги в производстве и имеют относительно хорошие характеристики прочности к весу.
Арматура может быть ориентирована для обеспечения специальных свойств в направлении нагрузок, действующих на конечный продукт. Многие материалы способны армировать полимеры. Стекловолокна составляют более 90 процентов волокон, используемых в армированных пластмассах, потому что они недороги в производстве и имеют относительно хорошие характеристики прочности к весу.
Некоторые материалы, такие как целлюлоза в древесине, являются природными продуктами. Однако большинство коммерческих подкреплений созданы руками человека. Существует множество коммерчески доступных типов армирования, отвечающих конструктивным требованиям пользователя. Возможность адаптировать архитектуру волокна позволяет оптимизировать производительность продукта, что приводит к снижению веса и стоимости. Кроме того, каждый из типов волокон может быть сконфигурирован в различных формах для обслуживания широкого спектра процессов и требований к конечному продукту.
- Ударопрочность
- Прочнее стали в некоторых формах
- Прозрачный для радиосигналов
Основанные на алюмо-известково-боросиликатной композиции волокна из стекла «E» или «E-CR» считаются преобладающими армирующими элементами для композитов с полимерной матрицей из-за их высоких электроизоляционных свойств, низкой восприимчивости к влаге и высоких механических свойств. Стекло E-CR отличается от стекла E-стекла превосходными свойствами коррозионной стойкости. Другие коммерческие составы включают стекло «S» с более высокой прочностью, термостойкостью и модулем, H-стекло с более высоким модулем и стекло AR (щелочестойкое) с превосходной коррозионной стойкостью. Стекло, как правило, является хорошим ударопрочным волокном, но весит больше, чем углерод или арамид. Стекловолокно обладает превосходными механическими характеристиками, в некоторых формах прочнее стали. Более низкий модуль требует специальной обработки конструкции, где жесткость имеет решающее значение. Стеклянные волокна прозрачны для радиочастотного излучения и используются в радиолокационных антеннах.
- Высокие температуры
- Высокая прочность
- Очень легкий
Углеродные волокна изготавливаются из органических прекурсоров, включая ПАН (полиакрилонитрил), вискозу и смолы, причем последние два обычно используются для низкомодульных волокон. Термины «углеродное» и «графитовое» волокно обычно используются взаимозаменяемо, хотя технически графит относится к волокну, состав которого составляет более 99 процентов углерода, по сравнению с 93-95 процентами для углеродных волокон на основе ПАН. Углеродное волокно обеспечивает самую высокую прочность и жесткость среди всех армирующих волокон. Высокотемпературные характеристики особенно важны для углеродных волокон. Основным недостатком волокон на основе ПАН является их высокая относительная стоимость, которая является результатом стоимости основного материала и энергоемкости производственного процесса. Композиты из углеродного волокна более хрупкие, чем стекло или арамид. Углеродные волокна могут вызвать гальваническую коррозию при использовании рядом с металлами. Для предотвращения этого используется барьерный материал, такой как стекло и смола.
- Низкая плотность
- Устойчивость к повреждениям/ударам
- Сжатие
- Тепловая и электрическая изоляция
Наиболее распространенным синтетическим волокном является арамид. Арамидное волокно представляет собой ароматический полиимид, представляющий собой искусственное органическое волокно для композитного армирования. Арамидные волокна обладают хорошими механическими свойствами при низкой плотности с дополнительным преимуществом в виде ударной вязкости или устойчивости к повреждениям/ударам. Они характеризуются достаточно высокой прочностью на растяжение, средним модулем и очень низкой плотностью по сравнению со стеклом и углеродом. Арамидные волокна являются изоляторами электричества и тепла и повышают ударопрочность композитов. Они устойчивы к органическим растворителям, горюче-смазочным материалам. Арамидные композиты не так хороши по прочности на сжатие, как стеклянные или углеродные композиты. Сухие арамидные волокна прочны и используются в качестве тросов или канатов, а также часто используются в баллистических целях. Кевлар®, пожалуй, самый известный пример арамидного волокна. Арамид является преобладающей заменой органического армирующего волокна для стальных брекеров в шинах.
- Удар
- сопротивление усталости
- гибкий
- низкая плотность
Полиэфирные и нейлоновые термопластичные волокна недавно стали применяться как в качестве основного армирующего материала, так и в сочетании со стекловолокном. Привлекательные характеристики включают низкую плотность, разумную стоимость и хорошую ударопрочность и сопротивление усталости. Хотя полиэфирные волокна обладают довольно высокой прочностью, их жесткость значительно ниже, чем у стекла. Более специализированные армирующие материалы для обеспечения высокой прочности и использования при высоких температурах включают металлы и оксиды металлов, например те, которые используются в самолетах или аэрокосмической промышленности.
ФОРМЫ АРМАТУРЫ – Как устроено волокно Независимо от материала арматура доступна в формах, подходящих для широкого спектра процессов и требований к конечному продукту. Материалы, поставляемые в качестве армирующих материалов, включают ровинг, измельченное волокно, рубленые нити, непрерывный, рубленый или термоформуемый мат. Армирующие материалы могут быть разработаны с уникальной архитектурой волокна и предварительно отформованы (формованы) в зависимости от требований к продукту и производственного процесса. Формы могут включать:
- антикоррозийный
- высокая прочность
- хорошее качество поверхности
- Литье – SMC, напыление, намотка накаливания, пултрузия
Ровинги используются в основном в термореактивных смесях, но могут использоваться и в термопластах. Ровинги с несколькими концами состоят из множества отдельных прядей или пучков нитей, которые затем нарезаются и случайным образом укладываются в полимерную матрицу. В таких процессах, как листовая формовочная смесь (SMC), преформа и напыление, используется многосторонний ровинг. Многосторонние ровницы также могут использоваться в некоторых приложениях для намотки нити и пултрузии. Ровница с одним концом состоит из множества отдельных нитей, намотанных в одну прядь. Продукт обычно используется в процессах, использующих однонаправленное армирование, таких как намотка волокна или пултрузия.
- гибкость дизайна
- высокие механические характеристики
- долговечность
- коррозионная стойкость
- Формование – пултрузия, прессование
Армирующие маты и нетканые вуали обычно описываются по весу на единицу площади. Например, мат из рубленого волокна весом 2 унции будет весить 2 унции на квадратный ярд. Тип армирования, дисперсия волокон и количество связующего, используемого для скрепления мата или вуали, определяют различия между продуктами мата. В некоторых процессах, таких как ручная укладка, связующее необходимо растворить. В других процессах, особенно при компрессионном формовании и пултрузии, связующее должно выдерживать гидравлические силы и растворяющее действие матричной смолы во время формования. Таким образом, с точки зрения связующего, производятся две основные категории матов или вуалей, известные как растворимые и нерастворимые связующие.
- Ориентация волокна по индивидуальному заказу
- Повышенная устойчивость к сдвигу/кручению
- Молдинг — РТМ
Существует множество типов тканей, которые можно использовать для усиления смол в композите. Разнонаправленное армирование получают путем переплетения, вязания, сшивания или плетения непрерывных волокон в ткань из крученой и крученой пряжи. Ткани могут быть изготовлены с использованием практически любого армирующего волокна. Наиболее распространенные ткани изготавливаются из стекловолокна, углерода или арамида. Ткани обладают направленной прочностью и высокими нагрузками армирования, которые часто встречаются в высокопроизводительных приложениях. Ткани позволяют точно разместить армирование. Это невозможно сделать с размолотыми волокнами или рублеными нитями, а возможно только с непрерывными нитями с использованием относительно дорогого оборудования для укладки волокон. Из-за непрерывной природы волокон в большинстве тканей отношение прочности к весу намного выше, чем у версий с разрезанными или рублеными волокнами. Сшитые ткани позволяют настроить ориентацию волокон в структуре ткани. Это может иметь большое преимущество при проектировании с учетом устойчивости к сдвигу или кручению.
- Высокая прочность в направлении волокна
- Повышенная устойчивость к сдвигу/кручению
- Молдинг – RTM, компрессионный
Однонаправленные армирующие материалы включают ленты, жгуты, однонаправленные жгуты и ровинг (представляющие собой наборы волокон или прядей). Волокна в этой форме выровнены параллельно в одном направлении и не извиты, что обеспечивает высочайшие механические свойства. Композиты с использованием однонаправленных лент или листов обладают высокой прочностью в направлении волокон. Однонаправленные листы тонкие, и для большинства структурных применений требуется несколько слоев. Типичные области применения однонаправленного армирования включают высоконагруженные композитные материалы, такие как компоненты самолетов или гоночные лодки.
- Многие приложения
- Молдинг – вакуумный пакет
Препреги – готовый материал, изготовленный из армирующей формы и полимерной матрицы. Пропускание армирующих волокон или форм, таких как ткани, через ванну со смолой используется для изготовления препрега. Смола насыщается (пропитывается) волокном, а затем нагревается для продвижения реакции отверждения на различные стадии отверждения. Доступны термореактивные или термопластичные препреги, которые можно хранить в холодильнике или при комнатной температуре в зависимости от составляющих материалов. Препреги можно наносить вручную или механически в различных направлениях в зависимости от требований дизайна. Слои препрегов укладываются в инструмент вручную или на автоматизированном оборудовании.