Люминесцентные светильники: характеристики и устройство
Люминесцентными светильниками принято считать устройства, работающие с соответствующим видом газоразрядных ламп. Принцип работы источников света основан на способности электрического тока излучать световые волны ультрафиолетового спектра при прохождении через металлизированный газ.
В люминесцентных лампах используются ртутные пары и минеральный люминофор, преобразующий ультрафиолетовое свечение в свет видимого спектра. Лампы имеют продолжительный срок службы (> 5 лет), хорошую яркость, превышающую аналогичный показатель ламп накаливания в несколько раз, и более широкие возможности в плане оттенков и температуры свечения.
Основные характеристики люминесцентных светильников
Большое разнообразие форм и размеров источников света, относящихся к упомянутому типу, открыло широкие возможности для производителей осветительных приборов. Принцип работы люминесцентных светильников и их комплектацию можно назвать унифицированными величинами. Все модели состоят из элементов:
- стального или алюминиевого каркаса;
- защитной решетки;
- отражателя;
- рассеивателя;
- системы запуска.
Светильники разделяются по классу распределения света, степени защиты, способу установки и классу цветопередачи. Показатель распределения высчитывается в процентах, где за единицу (100%) берется прямой столб света. По данному признаку светильники делятся на:
- отражающие – не более 20%;
- частично отражающие – до 40%;
- направленные – более 80%
- частично направленные – 60-80%;
- рассеивающие – не более 60%.
Степень защиты в соответствии международной классификацией Ingress Protection (IP) определяет сферу использования осветительных приборов. По предназначению и защищенности от влажности и загрязнений люминесцентные светильники подразделяются на типы:
- промышленные;
- офисные;
- бытовые.
Светильник, вне зависимости от сферы его применения, может иметь несколько способов установки. Если речь идет о потолочных осветительных приборах, то можно рассматривать подвесные, накладные и встраиваемые приборы. Светильники могут комплектоваться линейными и компактными лампами (ЛЛ и КЛЛ). Существуют одно-, двух и трехламповые приборы.
Яркость и интенсивность освещения прямо зависит от количества ламп, их мощности и качества люминофора. Цветность ламп данного типа регламентирована государственным стандартом ГОСТ 6825-91 и имеет следующую кодировку:
- лампы дневного света 6-6,5 КК (кило кельвинов) – Д;
- белого холодного свечения 5 КК – ХБ;
- белого теплого свечения 3 КК – ТБ;
- белые естественного света 4 КК – Б.
Максимально качественной цветопередачей обладают лампы с люминофором класса «Люкс» и «Супер Люкс», имеющие маркировку Ц и ЦЦ. Показатель цветопередачи влияет на комфорт. Он рассчитывается и приравнивается к аналогичной величине естественного света, взятой за коэффициент 100, обозначаемый как Ra.
Устройство люминесцентных светильников
В короб светильника вмонтированы контактные узлы с элементами крепления ламп. При подаче тока на электроды газ, находящийся внутри стеклянной колбы, начинает светиться в ультрафиолетовом спектре. Изнутри стенки колбы обработаны люминофором, состав которого влияет на цветопередачу и яркость. За подачу тока и стабильную работу ламп отвечает электронный узел со стартером-пускателем.
Существует две основные разновидности пускорегулирующих аппаратов для люминесцентных светильников:
- ЭПРА – электронный пусковой аппарат современного типа, состоящий из инвертора, выпрямителя, фильтров и балласта. Ток из сети 220В поступает в выпрямитель, затем поступает в блок конденсатора и перенаправляется в инвертор. Для «запуска» процесса люминесценции требуется ток мощностью 600Вт. Именно таким показателем обладает энергия, выходящая из дроссельного блока. Средняя скорость срабатывания лампы с ЭПРА равна 1,7 сек.
- ЭмПРА – электромагнитный стартер, состоящий из индукционной катушки, зажигателя и конденсатора. Это устаревший механизм запуска, работа которого сопровождается большими потерями энергии, гулом и «миганием» лампы при включении. Также ЭмПРА отличается большим весом и значительным нагревом.
Среди востребованных в настоящее время светильников с люминесцентными лампами для офисов и квартир, можно отметить модели следующих конструкций:
- экранированные – двух- или четырехламповые приборы с двойной отражающей решеткой;
- экранированные матовые – аналогичные по конструкции приборы, отличающиеся наличием матированной или окрашенной решетки;
- с рассеивателем опалового или призматического типа;
- с отражателями различного вида;
- открытые;
- с регуляторами яркости – диммерами;
- с направленным световым потоком – даунлайт;
- модульные светильники.
К недостаткам люминесцентных ламп можно отнести наличие значительного количества ртути, мерцание ламп при включении, постепенную деградацию люминофора и изменение спектра свечения, потребность в сложном пускорегулировочном узле.
устройство, принцип работы, виды, маркировка
Среди огромного разнообразия устройств искусственного освещения достаточно весомую нишу занимают люминесцентные лампы. Этот вид световых приборов был впервые представлен еще в 1938 году, бросив вызов единственным монополистам того времени, лампочкам накаливания. С того времени их конструктивные особенности претерпели значительные изменения и доработки за счет чего люминесцентные лампы перешли в разряд энергосберегающих. Но, чтобы разобраться во всех за и против, детально ознакомиться с особенностями их эксплуатации в быту и промышленности, мы детально изучим этот вид осветительных приборов.
Устройство и принцип работы
Конструктивно люминесцентные лампы представляют собой стеклянную колбу, внутренняя поверхность которой покрывается специальным составом – люминофором. Он состоит из галофосфата кальция и других примесей, некоторые варианты содержат редкоземельные элементы – тербий, европий или церий, но такие комбинации являются довольно дорогими.
Из колбы на этапе изготовления откачивается весь воздух, а емкость заполняется смесью инертных газов, чаще всего аргона, и паров ртути. В зависимости от модели лампы химический состав, как инертных газов, так и люминофора будет отличаться. Внутри газовой смеси располагается вольфрамовая нить накала, которая покрывается эмитирующим покрытием.
Рис. 1. Устройство и принцип действия люминесцентной лампыПринцип действия такой энергосберегающей лампы заключается в такой последовательности электрохимических процессов:
- На контакты газоразрядной ртутной лампы подается напряжение питания, за счет чего в цепи нити накаливания начинает протекать электрический ток.
- При протекании электрического тока с поверхности нити начинает распространяться тепловая энергия и частицы эмиттеры, которые активируют инертный газ и обуславливают выделение ультрафиолетового излучения.
- Свечение газов имеет относительно низкий процент видимого спектра, так как большая часть приходится на ультрафиолетовые волны. Но при достижении ультрафиолетом стеклянной колбы газоразрядной лампы, происходит активация и последующей свечение люминофора.
Спектр свечения люминесцентных лампочек может варьироваться в довольно широком диапазоне. Выбор оттенков свечения в осветительных устройствах осуществляется посредством изменения процентного соотношения магния и сурьмы в составе люминофора.
Также важным моментом является температурный показатель, поэтому величина подаваемого напряжения и протекающего электрического тока должны иметь постоянное значение для каждого диаметра колбы. Именно строгое соблюдение электрических характеристик по отношению к ее геометрическим параметрам в люминесцентной лампе позволяет выдавать нужный цвет и яркость свечения.
Разновидности
Все разнообразие люминесцентных ламп характеризуется достаточно большим спектром параметров. Но в рамках данной статьи мы рассмотрим наиболее отличительные из них.
По величине давления газа внутри колбы, на практике различают светильники высокого и низкого давления:
- Высокого давления – такие люминесцентные приборы выдают плотный световой поток насыщенных цветовых оттенков. Применяются в достаточно мощных моделях с номиналом от 50 до 2000 Вт, характеризуются сроком службы от 6 тыс. до 15 тыс. часов.
- Низкого давления – отличается относительно небольшой плотностью газа в емкости, применяется для освещения помещений в быту или на производстве.
По форме колбы энергосберегающей лампочки – колба может иметь классическую грушевидную форму со стеклянной спиралью внутри, продолговатую вытянутую форму, вид спиралевидной трубки закрученной вокруг оси, кольцевидные и других форм.
Рис. 2. Разновидности колбыПо конструкции цоколя различают люминесцентные лампы со стандартным цоколем E с числовым обозначением, указывающим диаметр самого цоколя газоразрядного источника. G – штыревой, в котором число после буквенной маркировки показывает расстояние между контактами, а перед на количество пар контактов. Также можно встретить модели с цоколем типа W и F, но они используются довольно редко.
Рис. 3. Разновидности цоколейПо цветовой температуре свечения различают люминесцентные приборы с горячим желтым и холодным синим спектром. Также существуют варианты нейтрального цвета свечения. Цветовые температуры подбираются в соответствии с поставленными задачами: теплые для жилья, холодные для производственных объектов.
Рис. 4. Цветовая температураМаркировка
Система обозначения люминесцентных лампочек определяет их основные параметры Однако, в зависимости от страны производителя будут отличаться и стандарты в обозначении. Для сравнения рассмотрим оба варианта маркировки на примере отечественных и зарубежных производителей.
Отечественная
Отечественная маркировка включает в себя буквенно-цифровое обозначение, которое включает в себя четыре позиции для букв и одну для чисел. К примеру: ЛБЦК-60.
Первая буква в маркировке Л означает лампа. Вторая позиция более сложная, она может выражаться как одной, так и парой буквосочетаний, обозначает индексы цветопередачи, в ней возможны такие варианты:
- Д – дневного спектра;
- ХБ – холодное белое свечение;
- Б – белого цвета;
- ТБ – белый теплых оттенков;
- ЕБ – белый естественного спектра;
- УФ – ультрафиолетового спектра;
- Г – голубого цвета;
- С – синего оттенка;
- К – красный спектр излучения;
- Ж – желтого оттенка
- З – зеленого цвета.
Третья позиция определяет качество цветопередачи, но в наличии есть только два варианта Ц – улучшенного качества или ЦЦ – особенно повышенного, которое часто применяется в декоративном освещении.
В четвертой позиции указывается конструкция светильника. Имеются пять основных позиций:
- А – амальгамного типа;
- Б – с быстрым пуском;
- К – кольцевого вида;
- Р – рефлекторные лампы
- У – U образные.
Зарубежная
Люминесцентные лампы зарубежного образца имеют идентичный принцип маркировки. В начале указывается мощность изделия в ваттах, ее легко узнать по латинской букве W.
Тип свечения определяется цифровым кодом с буквенным пояснением на английском:
- 530 – это теплый тон люминесцентных ламп, но относительно плохой цветопередачи;
- 640/740 – не совсем холодный, но близкий к нему с посредственным уровнем цветопередачи;
- 765 – голубого оттенка с посредственным уровнем передачи цветов;
- 827 – близкий к лампе накаливания, но с хорошей передачей цветов;
- 830 – близкий к галогенной лампочке, с хорошим уровнем передачи цвета;
- 840 – белого оттенка с хорошим уровнем передачи цветов;
- 865 – дневного спектра с хорошей цветопередачей;
- 880 – дневной спектр с отличной степенью передачи света;
- 930 – теплый тон с отличными параметрами цвета и низким уровнем светоотдачи;
- 940 – холодный тон с отличной передачей цвета и средним уровнем светоотдачи.
- 954/965 – люминесцентные устройства с непрерывным спектром.
Технические характеристики
Важными техническими характеристиками для люминесцентных ламп являются:
- Мощность лампы – может варьироваться в пределах от 10 до 80 Вт для классических бытовых нужд, промышленные модели могут достигать 2000 Вт;
- Номинальное напряжение – в большинстве случаев применяется напряжение 220В;
- Температура цветового свечения – варьируется в пределах от 2700 до 6500°К;
- Светоотдача – количество выделяемого светового потока в перерасчете на 1Вт потребленной электроэнергии для люминесцентных устройств составляет от 40 до 60Лм/Вт, но существуют и более эффективные модели;
- Габаритные параметры – зависят от конкретной модели люминесцентной лампы;
- Тип цоколя – E14 (миньон), E27 (стандартный типоразмер), G10 и G13 штырькового образца и другие.
Особенности подключения к сети
В виду сложностей, связанных с ионизацией газового промежутка, в люминесцентных лампах может использоваться несколько вариантов схемы включения, упрощающих зажигание разряда. Наиболее популярными являются электрические схемы электромагнитного и электронного балласта, которые мы и рассмотрим далее.
Электромагнитный балласт
Является наиболее старым вариантом, применяемым в пуске люминесцентных ламп с холодными катодами.
Рис. 5. Схема подключения с электромагнитным балластомКак видите, в этой схема лампа подключается через электромагнитный дроссель и стартер. В момент подачи напряжения стартер, состоящий из биметаллической пластины, представляет собой цепь с очень низким сопротивлением, поэтому ток в нем нарастает в значительной степени, но не доходит до величины КЗ благодаря дросселю. Этот процесс запускает электрический разряд в люминесцентной лампе, а при нагревании электроды стартера разомкнуться.
Электронный балласт
Такой способ подключения предусматривает использование специального автогенератора, собранного на трансформаторе и транзисторном блоке, способном выдавать напряжение повышенной частоты, что позволяет получить световой поток без мерцаний.
Рис. 6. Использование электронного балластаКак видите, готовый блок электронного балласта для питания люминесцентных ламп, применяется в соответствии со схемой подключения, которая указывается прямо на корпусе изделия.
Причины выхода из строя
Достаточно часто потребители, столкнувшиеся с проблемой прекращения работы или ухудшением параметров свечения люминесцентных ламп, задаются вопросом поиска причин неисправности.
Наиболее частыми причинами выхода люминесцентных ламп со строя являются:
- перегорание нити накала – характеризуется полным отсутствием свечения;
- нарушение целостности контактов – также не дает лампе загореться;
- разгерметизация колбы с последующим выходом инертного газа – характеризуется вспышками оранжевого цвета;
- перегорание стартера, пробой его конденсатора – мерцание, неспособность долго запуститься, черное пятно возле контактов;
- обрыв обмотки дросселя или пробой на корпус – не включается или дает попеременное включение/выключение в процессе работы люминесцентной лампы;
- замыкание в патроне люминесцентной лампы или его контактах – характеризуется миганием, но без последующего пуска.
Плюсы и минусы
В связи с жесткой конкуренцией на рынке люминесцентные осветительные приборы принято сравнивать с параметрами работы ламп другого принципа действия.
К преимуществам люминесцентных устройств следует отнести:
- Достаточно высокая эффективность, в сравнении с теми же лампами накаливания выдают на порядок больший световой поток на каждый ватт потребленной электроэнергии;
- Имеет несколько вариантов цветового спектра, что делает обоснованным их применение для различных целей;
- Срок эксплуатации до наработки на отказ в 10 – 15 раз превышает тот же показатель у ламп накаливания и галогенок;
- Достаточно большое разнообразие конструкций – компактные, большие, удлиненные и т.д.
Однако и недостатков у люминесцентных ламп существует немало:
- Гораздо более высокая стоимость;
- Наличие ртути, которая при разрушении колбы попадает в окружающее пространство;
- Даже уцелевшие отработанные лампы требуют специальной утилизации, которая также требует дополнительных затрат;
- Стабильность работы во многом зависит от температуры и влажности окружающей среды;
- Люминесцентные лампочки вызывают повышенную усталость глаз при длительном чтении или зрительном напряжении;
- В сравнении со светодиодными светильниками, бояться механических повреждений;
- Не поддаются классическим методам управления яркостью.
Область применения
Перечень сфер, в которых могут устанавливаться люминесцентные лампы, достаточно большой. Наиболее часто вы можете встретить их в бытовых помещениях или офисах как основное освещение. В магазинах или торговых центрах устанавливаются в качестве приборов подсветки витрин, стен и других элементов интерьера и могут легко заменить неоновую лампочку. Часто их можно встретить в подсветке коридоров и помещений большой площади удлиненными трубчатыми люминесцентными светильниками.
В промышленной сфере часто применяются как лампы для работы прожекторного освещения, которое охватывает большую площадь. Прожекторные люминесцентные приборы имеют отличную светопередачу, несмотря на удаленность по высоте от освещаемой поверхности.
Вниз по трубам — Как работают люминесцентные лампы
Центральным элементом люминесцентной лампы является герметичная стеклянная трубка . Трубка содержит небольшое количество ртути и инертный газ, обычно аргон , находящийся под очень низким давлением.
Когда вы включаете лампу, ток проходит через электрическую цепь к электродам. На электродах имеется значительное напряжение, поэтому электроны будут мигрировать через газ от одного конца трубки к другому. Эта энергия превращает часть ртути в трубке из жидкости в газ. Когда электроны и заряженные атомы движутся по трубке, некоторые из них будут сталкиваться с газообразными атомами ртути. Эти столкновения возбуждают атомы, поднимая электроны на более высокие энергетические уровни. Когда электроны возвращаются на свой первоначальный энергетический уровень, они испускают световые фотоны.
Реклама
Как мы видели в предыдущем разделе, длина волны фотона определяется особым расположением электронов в атоме. Электроны в атомах ртути устроены таким образом, что испускают в основном световые фотоны в ультрафиолетовом диапазоне длин волн. Наши глаза не регистрируют ультрафиолетовые фотоны, поэтому этот вид света необходимо преобразовать в видимый свет, чтобы осветить лампу.Здесь на помощь приходит люминофорное порошковое покрытие трубки. Люминофоры — это вещества, излучающие свет при воздействии света. Когда фотон попадает на атом люминофора, один из электронов люминофора перескакивает на более высокий энергетический уровень, и атом нагревается. Когда электрон возвращается к своему нормальному уровню, он высвобождает энергию в виде другого фотона. Этот фотон имеет меньше энергии, чем первоначальный фотон, потому что часть энергии была потеряна в виде тепла. В люминесцентной лампе излучаемый свет находится в видимом спектре — люминофор испускает
Обычные лампы накаливания также излучают значительное количество ультрафиолетового света, но они не преобразуют его в видимый свет. Следовательно, много энергии, используемой для питания лампы накаливания, тратится впустую. Люминесцентная лампа приводит в действие этот невидимый свет, поэтому эффективнее . Лампы накаливания также теряют больше энергии за счет тепловыделения, чем люминесцентные лампы. В целом, типичная люминесцентная лампа в четыре-шесть раз эффективнее лампы накаливания. Однако люди обычно используют лампы накаливания дома, поскольку они излучают «более теплый» свет — свет с большим количеством красного и меньшим количеством синего.
Как мы видели, вся система люминесцентных ламп зависит от электрического тока, протекающего через газ в стеклянной трубке. В следующем разделе мы увидим, что должна делать люминесцентная лампа, чтобы установить этот ток.
Процитируйте это!
Пожалуйста, скопируйте/вставьте следующий текст, чтобы правильно цитировать эту статью HowStuffWorks. com:
Том Харрис
«Как работают люминесцентные лампы»
7 декабря 2001 г.
HowStuffWorks.com.
3. Как работают люминесцентные лампы?
3.4. Физические характеристики ламп
Люминесцентная лампа излучает свет от столкновений в горячем газ («плазма») свободно ускоренного электроны с атомами – обычно ртуть – в какие электроны поднимаются на более высокие энергетические уровни, а затем отступать, излучая две линии УФ-излучения (254 нм и 185 нм). таким образом создаваемое УФ-излучение затем преобразуется в видимый свет от УФ возбуждение флуоресцентного покрытия на стеклянной оболочке фонарь. Химический состав этого покрытия подобран так, чтобы излучать в желаемом спектре.
Строительство
Трубка люминесцентной лампы заполнена газом с низким содержанием давление паров ртути и инертные газы в сумме давление около 0,3% атмосферное давление. В самая распространенная конструкция, пара излучателей накала, один на каждом конце трубки, нагревается током и используется для испускают электроны, которые возбудить благородные газы и газообразную ртуть ударной ионизацией. Эта ионизация может иметь место только в неповрежденных лампочках. Таким образом, неблагоприятные последствия для здоровья от этого процесса ионизации невозможны. Кроме того, лампы часто оснащены двумя оболочки, тем самым резко уменьшая количество УФ-излучения излучаемый.
Электрические аспекты эксплуатации
Для запуска лампы и поддерживать токи на адекватном уровне для постоянного освещения эмиссия. В частности, схема подает высокое напряжение на запускает лампу и регулирует ток, протекающий через трубку. Возможен ряд различных конструкций. в В простейшем случае используется только резистор, что относительно энергоэффективность неэффективна. Для работы от переменный ток (AC) сетевому напряжению, использование индуктивного балласта является обычным явлением и было известен отказом до окончания срока службы лампы, вызывающим мерцание лампы. Различные схемы, разработанные для начать и запустить выставка люминесцентных ламп различные свойства, т.е. эмиссия акустического шума (гула), срок службы (лампы и балласта), энергоэффективность и мерцание интенсивности света. Сегодня в основном улучшенная схема используется, особенно с компактными люминесцентными лампами, где схемотехника не может быть заменена перед люминесцентными лампами. Это уменьшило количество технических сбоев, вызывающих эффекты, как перечисленные выше.
ЭДС
Часть электромагнитный спектр который включает в себя статические поля и поля до 300 ГГц, это то, что здесь упоминается как электромагнитные поля (ЭМП). Литература о том, какие виды и какие силы ЭМП которые излучаются КЛЛ является редким. Тем не менее, существует несколько видов ЭМП, обнаруженных в вблизи этих ламп. Как и другие устройства, которые зависят на электричество для своих функций они излучают электрические и магнитные поля в низкочастотный диапазон (т. частота распределения 50 Гц и, возможно, также гармоники из них, напр. 150 Гц, 250 Гц и т. д. в Европе). Кроме того, КЛЛ, в отличие от лампы накаливания, также излучают в высокочастотном диапазоне ЭМП (30-60 кГц). Эти частоты отличаются между разными типами ламп.
Мерцание
Все лампы будут изменять свою силу света в два раза больше, чем в сети. (линейной) частоты, так как мощность, подаваемая на лампу, достигает пика дважды за цикл при 100 Гц или 120 Гц. За лампы накаливания это мерцание уменьшается по сравнению с люминесцентными лампами за счет тепла емкость нити. Если модуляция света интенсивность достаточна для восприятия человеческим глазом, то это определяется как мерцание. Модуляции на частоте 120 Гц не видно, в большинстве случаев даже не на частоте 50 Гц (Seitz et al. 2006). Флюоресцентные лампы в том числе КЛЛ, которые используют Поэтому высокочастотные (кГц) электронные балласты называются «без мерцания».
Однако как лампы накаливания (Чау-Шинг и Девани, 2004), так и Флуоресцентные источники света без мерцания (Хазова и О’Хаган 2008) производят едва заметное остаточное мерцание. Дефектный лампы или схемы могут в некоторых случаях привести к мерцанию при более низких частоты либо только в части лампы или во время пускового цикла продолжительностью несколько минут.
Световое излучение, УФ-излучение и синий свет
Имеются характерные различия между спектрами, излучаемыми люминесцентными лампами и лампы накаливания, потому что разных принципов работы. Лампы накаливания настроены на свою цветовую температуру специальными покрытиями стекло и часто продаются либо по атрибуту «теплый», либо «холодный» или, точнее, по их цветовой температуре для профессиональное освещение (фотостудии, магазины одежды и др.). В случае с люминесцентными лампами спектральное излучение зависит от люминофорного покрытия. Таким образом, люминесцентные лампы могут быть обогащены синим светом (длина волны 400-500 нм), чтобы лучше имитируют дневной свет по сравнению с лампами накаливания. Как и люминесцентные лампы, компактные люминесцентные лампы излучают больше синего цвета. светлее, чем лампы накаливания. Есть на международном уровне признанные пределы воздействия радиации (200-3000 нм) испускаемых лампами и светильниками, предназначенными для защиты от фотобиологической опасности (Международный электротехнический Комиссия 2006 г.). Эти пределы также включают излучение от КЛЛ.
УФ-содержание испускаемого спектра зависит как от люминофор и стеклянный колпак люминесцентной лампы. УФ эмиссия лампы накаливания это ограничивается температурой нити и впитывание стекла. Некоторые КЛЛ с одной оболочкой излучают УФ-В и следы УФ-С излучения на длине волны 254 нм, что не так для ламп накаливания (Хазова и О’Хаган, 2008 г.