Программа расчета водяного теплого пола: Программа теплый пол 3D калькулькулятор

Содержание

Калькулятор для расчета водяного теплого пола онлайн

Как самостоятельно рассчитываются отдельные элементы отопительной системы

Для начала представим вашему вниманию простую и понятную схему – рисунок, на которой изображено расположение водяных контуров в жилых помещениях.

Рассчитывать мощность следует начинать с элементарных, простых шагов. План расположения водяного отопительного контура станет основной для последующих расчетов. На схеме обычно указывается так же расположение оконных и дверных проемов.

Такие схемы выполняются на миллиметровой бумаге, в масштабе 10 мм соответствует 0,5 м.

Для определения полезной отапливаемой площади следует отталкиваться от шага. Обычно применяются следующие соотношения:

  • при шаге 15 см – полезная площадь не должна превышать 12 кв. метров;
  • при шаге 20 см – не более 16 м2;
  • при шаге 25 см —  не более 20 м2;
  • шаг в 30 см позволяет эффективно отапливать помещение площадью в 25 м2.

Если площадь меньше рекомендуемых параметров, контуры лучше оставлять целым.

Выбираем трубы: материал, диаметр, количество

Для скрытых систем отопления можно использовать металлические и полимерные трубы. Наиболее долговечной и эффективной по праву считается медная система. Однако в нашей стране этот материал используется достаточно редко. Причиной тому – высокая цена. Кроме того, для монтажа медных труб необходимо специальное дорогостоящее оборудование, а значит, самостоятельная их укладка не рентабельна.

Немного чаще чем медь для монтажа «подпольных» систем домашние умельцы используют полипропилен и сшитый полиэтилен (РЕХ-труба). Но и эти материалы нельзя назвать самыми попу

Калькулятора теплых полов

Для чего это нужно

Калькулятор теплого пола позволяет легко рассчитать необходимое количество греющего кабеля для основных типов помещений.

Кнопка «Рассчитать» запускает расчет параметров монтажа.

Вы можете сохранить результаты расчета в формате pdf и перейти в каталог для заказа товара.

Результаты программы расчета могут отличаться от результатов профессиональных инженерных расчетов.

Памятка перед монтажем. Частично аккумулирующее отопление

Снижение затрат на электроэнергию может достигаться за счет использования систем отопления, задействованных в ночные часы. Для этого необходимо, чтобы тепло накапливалось в бетонной стяжке во время действия низких тарифов, и обогревало помещение днем. Бетонная стяжка прогревается нагревательными кабелями, интенсивность, скорость прогревании накопление тепла зависит от толщины стяжки, глубины залегания кабеля и материала покрытия пола. Нагревательные кабели можно использовать как для укладки в базовую, так и выравнивающую стяжку. Частично аккумулирующее отопление обычно используется с такими материалами покрытия пола как линолеум, дерево, ковролин. Необходимо убедиться в том, что толщина стяжки достаточна для накопления тепла, в противном случае требуется заложить дополнительные источники отопления.

Правильный температурный режим

Для достижения максимального уровня комфорта мы рекомендуем поддерживать следующие температуры поверхности пола:

  • Линолеум 26-28 °C
  • Керамическая плитка/ бетонный пол 26-28 °C
  • Ламинат 23-27 °C

Максимальная температура пола может быть ограничена терморегулятором.

Если Вам неизвестна максимально допустимая температура поверхности для Вашего материала покрытия пола, пожалуйста, свяжитесь с его производителем.

Важно! Дерево является хорошим теплоизоляционным материалом.

Что нужно учесть при монтаже теплого пола

  • Нагревательные кабели не устанавливаются под мебелью и стационарными предметами
  • Необходимо соблюдать монтажный интервал в расчетных пределах и минимальный радиус изгиба
  • Нельзя допускать пересечения нагревательных кабелей друг с другом
  • Кабель должен находиться в равномерной и однородной среде по всей его длине
  • Во избежание перегрева, кабель нельзя устанавливать внутри теплоизоляционного слоя
  • Во избежание физических повреждений, кабель укладывается только на очищенную поверхность
  • Нагревательный кабель не должен проходить через подвижный шов, изломы или монтироваться в зонах возможного перегрева. Расстояние до источников тепла, например, камина, печи в сауне и т.п. должно быть не менее 0,5 м
  • Возможность использования нагревательного кабеля с материалами покрытия пола регламентируется их производителями
  • Резистивный нагревательный кабель нельзя укорачивать или наращивать
  • Во всех зонах необходимо использовать устройство защитного отключения на 30 мA
  • Угол установки гофро-трубки под датчик на стене должен быть таким, чтобы датчик было легко извлечь в случае его выхода из строя. Датчик устанавливается посередине между витками кабеля
  • Монтажный интервал может быть меньше в зонах максимальных теплопотерь, например, окон, но не менее 2-х радиусов изгиба
  • Нельзя включать кабель до окончательного высыхания стяжки или выравнивающего раствора. Точные сроки регламентируются производителями. Для бетонной стяжки этот срок составляет около 30 дней, для выравнивающего раствора или клея — до 14 дней.

Теплый пол (водяной теплый пол)

  • VALTEC
  • Теплый пол (водяной теплый пол)

Водяное напольное отопление становится все более популярным, поскольку обладает рядом преимуществ и является более энергоэффективными, по сравнению с традиционными радиаторными системами. Поскольку тепло в данном случае передается излучением от нагретой поверхности, практически отсутствуют конвективные потоки. Вертикальное распределение тепла от пола к потолку не позволяет перегреваться верхним областям помещения, что существенно снижает теплопотери через кровлю, верхние части стен и создает оптимально комфортные температурные условия для находящихся в помещении людей. Экономия от применения водяных теплых полов может достигать 10–30 %. Это возможно благодаря снижению средней температуры воздуха в помещении на 2 °С и температуры нагрева теплоносителя до 30–45 °С. Кроме того, низкотемпературные системы отопления (теплый пол) обладают ярко выраженным эффектом саморегулирования, то есть теплоотдача с поверхности пола прекращается, когда температура в комнате, в результате внешних воздействий (выглянуло солнце) достигает температуры поверхности пола. В то же время, теплоотдача возрастает, когда снижается температура в помещении. Радиаторы работают по тому же принципу, но разница температур между воздухом в комнате и поверхностью радиаторов так велика, что эффект саморегулирования практически пропадает.

VALTEC поставляет на российский рынок широкий ассортимент качественной продукции, позволяющий реализовать систему напольного отопления любой сложности. Это металлополимерная труба, надежные обжимные и пресс-фитинги, коллекторные блоки, насосно-смесительные узлы, а также автоматика, обеспечивающая заданный уровень комфорта в помещениях. Для специалистов разработаны Альбом типовых схем водяного отопления для жилых домов, где собраны различные варианты организации одно- и многоконтурных систем, а также программный комплекс для расчета элементов инженерных систем VALTEC. Программа VALTEC.PRG дает возможность определить теплопотребность помещений и грамотно определить теплотехнические и гидравлические параметры напольного отопления.

Кроме того, инженеры VALTEC продумали готовые решения для монтажа водяного теплого пола с различным уровнем автоматизации («Эконом», «Комфорт», «Премиум») в помещениях площадью 20, 40, 60, 80 и 120 м2. Воспользовавшись этими спецификациями, можно самостоятельно укомплектовать систему напольного отопления своего дома или при выполнении монтажных работ на объекте заказчика.

В помощь специалистам и владельцам жилья разработан также «Типовой комплект водяного теплого пола для помещений площадью до 60 м2

».

Комплексный подход VALTEC к системам напольного отопления гарантирует их экономичность, оптимальную стоимость и длительную безаварийную работу.

Задай свой вопрос по водяным теплым полам

 

Интервью

 

Водяной теплый пол valtec: есть ответы на все вопросы


Каждый, кто начинал строительство нового дома, сталкивался с проблемой выбора. Сначала это выбор проекта, дизайна, строительной организации, затем – материалов, технологий и т.д. Желая помочь читателям в выборе системы отопления, мы пообщались с руководителем направления «Водяной теплый пол» VALTEC Сергеем Пискаревым.

Прежде всего, VALTEC известен как производитель труб и арматуры для внутренних инженерных систем. Почему с 2010 года одним из приоритетных направлений ее развития стали системы для напольного отопления?
– Любому бизнесу необходимо развитие. Малейший простой на месте – это шаг назад. Но и двигаться необходимо в перспективном и востребованном направлении. Проанализировав ситуацию на рынке и оценив свои возможности, мы пришли к решению, что водяной теплый пол – это именно то, что нужно. Специалисты VALTEC давно занимаются подобными системами. Большинство необходимого для их монтажа оборудования у нас уже было. А изучение рынка показало, что в перспективе данная технология может быть очень востребованной. Хотя многие пользователи до сих пор не знают о преимуществах напольного отопления и по старинке применяют только радиаторы.

В чем же заключаются эти преимущества?
– Их достаточно много. В первую очередь – комфорт. В отличие от традиционных отопительных приборов конвективного типа (радиаторов), напольное отопление передает тепло главным образом излучением, и оно распределяется по всему помещению равномерно, отсутствуют зоны локального перегрева или недостаточно прогреваемые участки. При этом температура воздуха постепенно понижается от пола до потолка, а для организма человека такие условия наиболее близки к оптимальным. Необходимо отметить и такие преимущества «теплого пола», как энергоэффективность, эстетика, гигиеничность.

Вы сказали, что водяное напольное отопление – это энергоэффективная система. А чем это обеспечивается?
– Экономия энергии при использовании системы «водяной теплый пол» может быть очень существенной. Дело в том, что температура теплоносителя, поступающего в трубы теплого пола, составляет всего 35–50 °С, что позволяет снизить энергозатраты на нагрев. При этом можно использовать низкотемпературный конденсационный котел с увеличенным КПД. Вертикальное распределение тепла от пола к потолку не позволяет перегреваться верхним областям помещения, поэтому уменьшаются теплопотери через кровлю и верхние части стен.
Поскольку тепло распределяется в помещении равномерно, средняя температура в комнате может быть понижена на 2 °С без изменений в ощущениях тепла человеком, что обеспечивает экономию энергии на 10–20 %. И это при стандартной высоте потолка в 3 м. В том случае, если мы используем теплый пол в помещении с высокими потолками, где нет необходимости прогрева верхних слоев воздуха, экономия составляет 30 % и более.

Вместе с тем, немаловажную роль в экономии играет эффект саморегулирования водяного теплого пола, то есть система сама реагирует на перепады температуры в помещении, изменяя мощность теплового потока. Например, представим себе, что выглянуло солнце, и воздух в комнате нагрелся на 2–4°С. При этом теплоотдача теплого пола самопроизвольно уменьшается на 36–70 %.

А в чем проявляются эстетика и гигиеничность «теплого пола»?
– Все элементы системы надежно скрыты под напольным покрытием, что, согласитесь, лучше подойдет для современных интерьеров, чем торчащие из пола и стен трубы. Это становится особенно важным при использовании в строительстве панорамных окон – от пола до потолка. Да и в ретро-интерьер радиаторы вписываются не очень органично.
Так как тепло передается не конвекцией, а излучением, в воздухе помещения практически отсутствует циркуляция пыли и микроорганизмов. Эта особенность напольного отопления как нельзя кстати для аллергиков. Кроме того, в отличие от электрического теплого пола, водяной не создает электромагнитных полей.
Плюс ко всему, напольное отопление исключает возможность детского травматизма, а в некоторых случаях, как например, при устройстве спортивного зала, оно является самым безопасным решением.

Скажите, какие «подводные камни» могут ожидать владельца коттеджа, если он примет решение использовать систему водяного напольного отопления?
– Главное сделать правильный выбор в пользу того или иного производителя и не ошибиться с монтажной организацией, а точнее – с квалификацией ее специалистов. Неграмотный монтаж способен свести на нет преимущества даже самого передового оборудования. Вот почему мы много внимания уделяем обучению монтажников. Ежемесячно наши специалиста посещают партнеров в различных регионах России и других стран СНГ, проводят семинары, отвечают на вопросы практиков. На семинары, которые каждую пятницу проводятся в офисе VALTEC, может записаться любой желающий. Кроме того, VALTEC издано большое количество технической литературы, разработана компьютерная программа для точного расчета системы.
Как и другая продукция VALTEC, компоненты для напольного отопления имеют 7-летнюю гарантию от производителя.

Водяной теплый пол: вопросы и ответы — проектирование, монтаж, эксплуатация

Расчет теплого водяного пола: программа калькулятор

Теплый пол … Водяной

Макет дома и чертежи

Водяной теплый пол может быть как альтернативный, так и основной источник тепла. От этого следует отталкиваться при расчетах. Например, может использоваться схема, которая будет обеспечивать полноценный обогрев дома и наоборот, легкий подогрев. Если же напольное отопление будет основным, то должна быть хорошо продуманная и надежная система регулировки.

По этой причине расчет теплого водяного пола требует внимания. В помощь к этому имеются разные программы и онлайн калькулятор. Это поможет выполнить все предварительные расчеты без ошибок. Ошибка на данном этапе может закончиться плохими последствиями, вплоть до демонтажа стяжки.

к содержанию ↑

Что необходимо учесть при расчетах

Перед началом расчета важно знать основные характеристики объекта. Как уже говорилось, на этом этапе следует определиться с методом обогрева данной системы, она будет вспомогательной или основной. При расчете следует учесть конфигурацию и площадь комнаты. Для этого в помощь будет план или разрез указанных размеров.

План дома и таблица с расчетами

Если у вас отсутствует план с точными размерами помещения, то первым делом необходимо его сделать!

Чтобы создать такой план потребуется знать такую информацию:

  • Из какого материала строился дом (бетон, дерево, блоки, кирпичи и прочее).
  • Остекление выполнено из стеклопакетов или профиля.
  • Средняя температура местности проживания в зимний период.
  • Имеется ли дополнительный или альтернативный источник тепла.

Более того, важно знать какая температура должна быть внутри помещения при работающем отоплении. Например, если в помещении будет постоянно находится люди, то достаточно будет 29°С. Для проходного и служебного помещения достаточно будет 35 и 33°С соответственно. Кроме всего прочего, важно выяснить тип и толщину теплоизоляции пола. Уже на этом этапе следует решить, какой будет использоваться отделочный материал для пола. Благодаря сбору такой информации получиться произвести точный расчет теплого водяного пола. Тем более что при использовании онлайн калькулятора все эти данные необходимо указать.

Видео об изготовлении схемы теплого пола:

Не менее важно определиться какую температуру должен иметь теплоноситель. В этом вопросе следует учесть два фактора:

  1. Ряд напольных покрытий имеют температурное ограничение нагревания до 35°С.
  2. Система, имеющая насос, котел, радиаторы и трубопровод никогда не будет иметь температуру теплоносителя более 60°С.

Другой вопрос, который следует учесть: как именно будет осуществляться контроль температуры нагрева пола? Как правило, для этого используют терморегулятор, а также датчик, который монтируется непосредственно в пол. Но для водяных систем этих датчиков быть два, для обратки и подачи.

Монтажная схема укладки тепловой трубы

к содержанию ↑

Важные условия для продуктивной работы водяного обогрева пола

Важно знать не только максимально точную информацию по техническим характеристикам дома, но и учитывать особенности трубопровода. Поэтому перед тем, как рассчитать теплый пол при помощи специальной программы следует узнать такие подробности:

  • Какая общая длина отопительного контура. По требованиям монтажа она не должна превышать 120 м.
  • Разница греющих труб не должна превышать 15 м.
  • Расстояние между трубами. В среднем оно будет находиться в пределах 100-200 мм.

Уже с этой информацией можно выполнить необходимые расчеты.

к содержанию ↑

Два метода расчета теплого водяного пола

Существует два решения проблемы по расчету теплых полов. В первом случае потребуется помощь квалифицированных специалистов или компании. Они произведут все необходимые вычисления и измерения. После, они предоставят для вас подробный расчет, учитывая индивидуальные особенности помещения.

В таких компаниях работаю высококвалифицированные специалисты, которые имеют опыт проектирования на промышленном уровне. Это позволит рассчитывать на максимально точный результат, где будут учитываться разные нюансы и тонкости.

Если вы пожелаете, то вам предоставят консультацию по выбору наилучшего напольного покрытия. Процесс изготовления проект получится быстрей, если вы сразу предоставите все чертежи по планировке комнат.

Онлайн калькулятор для расчета теплого пола

Другой метод не затратный. Для этого на помощь приходит онлайн калькулятор. При этом вы сможете самостоятельно произвести точные вычисления стоимости работ и необходимых материалов. Использование такой программы, позволит определить необходимую мощность пола. Этот показатель будет исходить из общих тепловых потерь. Так, чтобы узнать эту информацию, в калькуляторе следует ввести данные о площади комнаты. При этом в эту сумму не должны включаться зоны, где будет стоять мебель и другое оборудование.

Калькулятор позволит вам избавиться от потребности производить самостоятельные сложные расчеты. Хотя полученные данные будут относительные, от них можно дальше отталкиваться. Также вы сможете узнать о масштабах будущего проекта. При желании можно будет узнать сколько необходимо стяжки. Для этого в программу вводятся следующие показатели:

  • Этаж.
  • Площадь в м2.
  • Толщина стяжки.

Безусловно, точную сумму вы сможете узнать только у специалистов. Но в таком случае вам получиться получить предварительную информацию. В большей степени на конечную сумму за работу и материалы влияет сложность работ, особенности проекта здания и многое другое. Все эти нюансы учитывают специалисты из специализированной компании. Итак, перед тем, как рассчитать теплый водяной пол на калькуляторе помните, что вы получите приблизительные данные. На нашем сайте вы сможете воспользоваться программой онлайн калькулятор.

Видео расчета теплых полов программой:

Остались вопросы?

Подбор этажных распределительных узлов для систем водяного отопления

Подключение к стоякам: СлеваСправа

Dy: 3/4″1″1 1/4″

Gmax = 1,13 м3/час        Qmax = 26,3 KВт

Вид балансировки узла: Без регулировкиБалансировочный клапанРегулятор перепада давлений

Крепление: РамаВстроенный шкафПристроенный шкаф

Коллекторы

Тип коллекторного блока: Без перепускного клапанаС перепускным клапаном

Число выходов: 345678

Dy коллектора: 1″1 1/2″

Воздухоотводчики: РучныеАвтоматические

Манометры: НетЕсть

Дренажные краны: НетЕсть

Теплосчетчики

Место установки: На прямойНа обратной

Тип выхода: НетM-BusИмпульсный + M-Bus

Выходы

Регулировка: НетБалансировочный клапанНастроечный клапанВентильСтабилизатор расхода со скрытой настройкойСтабилизатор расхода с открытой настройкой

Выход

Gном ТС м3/час:    Gрасч ТС м3/час:    ΔPрасч КПа  

 

Вода — удельная теплоемкость

Удельная теплоемкость (C) — это количество тепла, необходимое для изменения температуры единицы массы вещества на один градус.

При расчете массового и объемного расхода в системах водяного отопления при более высоких температурах следует скорректировать удельную теплоемкость в соответствии с рисунками и таблицами ниже.

Удельная теплоемкость дается при различных температурах (° C и ° F) и давлении водонасыщения (которое для практического использования дает тот же результат, что и атмосферное давление при температурах <100 ° C (212 ° F)).

  • I удельная теплоемкость сохора (C v ) для воды в замкнутой системе постоянного объема , (= изометрической или изометрической ).
  • Изобарическая теплоемкость (C p ) для воды в системе постоянного давления (ΔP = 0).

Онлайн-калькулятор удельной теплоемкости воды

Калькулятор ниже можно использовать для расчета удельной теплоемкости жидкой воды при постоянном объеме или постоянном давлении и заданных температурах.
Выходная удельная теплоемкость выражается в кДж / (кмоль * K), кДж / (кг * K), кВтч / (кг * K), ккал / (кг K), британских тепловых единицах (IT) / (моль * ° R). и Btu (IT) / (фунт м * ° R)

Примечание! Температура должна быть в пределах 0–370 ° C, 32–700 ° F, 273–645 K и 492–1160 ° R, чтобы получить допустимые значения.

См. Вода и тяжелая вода — термодинамические свойства.
См. Также другие свойства Вода при меняющейся температуре и давлении : Точки кипения при высоком давлении, Точки кипения при вакуумном давлении, Плотность и удельный вес, Динамическая и кинематическая вязкость, Энтальпия и энтропия, Теплота испарения, Константа ионизации , pK w , нормальной и тяжелой воды, точки плавления при высоком давлении, число Прандтля, свойства в условиях равновесия газ-жидкость, давление насыщения, удельный вес, удельный объем, теплопроводность, температуропроводность и давление пара в газожидкостном состоянии. равновесие,
, а также Удельная теплоемкость воздуха — при постоянном давлении и переменной температуре, воздух — при постоянной температуре и переменном давлении, аммиак, бутан, диоксид углерода, монооксид углерода, этан, этанол, этилен, водород, метан, метанол , Азот, кислород и пропан.


heat_capacity_C

heat_capacity_F

Удельная теплоемкость для жидкой воды при температурах от 0 до 360 ° C:

Для полного стола с изобарической удельной теплоемкостью — поверните экран!

[Дж / (моль K)] 340
Температура Изохорная удельная теплоемкость (C v )
Изобарическая удельная теплоемкость (C p )
[° C] [кДж / (кг K)] [кВтч / (кг K)] [ккал / (кг K)]
[BTU ( IT) / фунт м ° F]
[Дж / (моль · K)] [кДж / (кг · K)] [кВтч / (кг · K)] [ккал / (кг · К)]
[британские тепловые единицы (IT) / фунт м ° F]
0.01 75,981 4,2174 0,001172 1,0073 76,026 4,2199 0,001172 1,0079
10 75,505 4,1910 0,001164 1,0010 758 4,1910 0,001165 1,0021
20 74,893 4,1570 0,001155 0,9929 75.386 4,1844 0,001162 0,9994
25 74,548 4,1379 0,001149 0,9883 75,336 4,1816 0,001162 0,9988
74,11162 0,9988
74 0,001144 0,9834 75,309 4,1801 0,001161 0,9984
40 73.392 4,0737 0,001132 0,9730 75,300 4,1796 0,001161 0,9983
50 72,540 4,0264 0,001118 0,9617 75,31134 0,001118 0,9617 75,31134 0,9987
60 71,644 3,9767 0,001105 0,9498 75,399 4.1851 0,001163 0,9996
70 70,716 3,9252 0,001090 0,9375 75,491 4,1902 0,001164 1.0008
80 69,78
80 69 0,9250 75,611 4,1969 0,001166 1,0024
90 68.828 3,8204 0,001061 0,9125 75,763 4,2053 0,001168 1,0044
100 67,888 3,7682 0,001047 0,9000 75.91511 1,0069
110 66,960 3,7167 0,001032 0,8877 76,177 4.2283 0,001175 1,0099
120 66,050 3,6662 0,001018 0,8757 76,451 4,2435 0,001179 1,0135
140 0,8525 77,155 4,2826 0,001190 1,0229
160 62.674 3,4788 0,000966 0,8309 78,107 4,3354 0,001204 1,0355
180 61,163 3,3949 0,000943 0,81060 7 0,81060 1,0521
200 59,775 3,3179 0,000922 0,7925 80,996 4.4958 0,001249 1,0738
220 58,514 3,2479 0,000902 0,7757 83,137 4,6146 0,001282 1,1022
240 57003 0,7607 85,971 4,7719 0,001326 1,1397
260 56.392 3,1301 0,000869 0,7476 89,821 4,9856 0,001385 1,1908
280 55,578 3,0849 0,000857 0,7368 95,2857 0,7368 1,2632
300 55,003 3,0530 0,000848 0,7292 103,60 5.7504 0,001597 1,3735
320 54,819 3,0428 0,000845 0,7268 117,78 6,5373 0,001816 1,5614
55514
340 0,7352 147,88 8,2080 0,002280 1,9604
360 59.402 3,2972 0,000916 0,7875 270,31 15,004 0,004168 3,5836


Удельная теплоемкость для жидкой воды при температурах от 32 до 675 ° F:

Для полной таблицы с изобарической температурой Тепло — поверните экран!

900 1,0
Температура Изохорная удельная теплоемкость (C v )
Изобарическая удельная теплоемкость (C p )
[° F]

04 [BTU (IT) / (моль ° R)]

[BTu (IT) / (фунт м ° F)]
[ккал / (кг · K)]
[кДж / ( кг K)] [BTU (IT) / кмоль ° R] [BTu (IT) / фунт м ° F]
[ккал / кг K]
[кДж / кг К]
32.2 40,0 1,007 4,217 40,032 1,008 4,220
40 39,9 1,005 4,208 39,916 1,005 4,208 1,005 4,208
1,001 4,191 39,801 1,002 4,196
60 39,6 0,996 4.169 39,739 1,001 4,189
80 39,2 0,986 4,128 39,660 0,999 4,181
100 38,7 0,975 4,082 39,682
0,998 4,179
120 38,3 0,963 4,033 39,662 0,999 4.181
140 37,7 0,950 3,977 39,702 1.000 4,185
160 37,2 0,937 3,923 39,761 1,001 39,761 1,001180 36,7 0,923 3,865 39,835 1,003 4,199
200 36.1 0,909 3,805 39,927 1,005 4,209
212 35,7 0,900 3,768 39,993 1,007 4,216
22083 4,216
22083 3,745 40,042 1,008 4,221
240 35,0 0,880 3,686 40.186 1,012 4,236
260 34,4 0,867 3,629 40,364 1,016 4,255
280 33,9 0,854 3,574 40,580 4,278
300 33,4 0,841 3,522 40,838 1,028 4,305
350 32.3 0,813 3,404 41,685 1,050 4,394
400 31,3 0,789 3,302 42,902 1,080 4,522
450 30,4 3,209 44,009 1,108 4,639
500 29,7 0,748 3,130 47.296 1,191 4,986
550 28,8 0,725 3,035 51,318 1,292 5,410
600 28,3 0,713 2,987 59,6903 900 6,292
625 28,4 0,716 2,997 66,611 1,677 7,022
650 28.9 0,728 3,047 82,851 2,086 8,734
675 29,9 0,754 3,156 126,670 3,189 13,353
.

Расчет рекуперации водонагревателя

Расчет рекуперации электрической воды обогреватель / лето и зима:

A) Типичный жилой неодновременный водонагреватель мощностью 4500 Вт элементы.
Лето: 65 температура входящей воды. Ресурс: Средняя температура неглубоких грунтовых вод
Термостат установлен на 125F:
4500 ватт разделить на [повышение температуры 2,42 x 60] = 31 галлон в час. Восстановление летом
Зима: 40 температура входящей воды.
Термостат настроен на 125F:
4500 ватт разделить на [2.42 x 85 повышение температуры] = 21 галлон / час восстановление зимой

B) Бытовой водонагреватель переведен на одновременную проводку, где оба элементы могут нагреваться одновременно
Установите 2 элемента — 5550 Вт каждый, подключенный к отдельному 30 А выключатель. Ресурс: Как подключить синхронный водонагреватель
Лето: 65 температура входящей воды.
Термостат настроен на 125F. Ресурс: Как отрегулировать температуру водонагревателя
11000 ватт разделить на [повышение температуры 2,42 x 60] = 75 галлонов в час. рекуперация для одновременного водонагревателя летом
Зима: 40 температура входящей воды.
Термостат настроен на 125F:
11000 ватт разделить на [повышение температуры 2,42 x 85] = 53 галлона в час. рекуперация на одновременный водонагреватель зимой

Повышение восстановление путем повышения температуры на термостате
Повышение рекуперации путем изменения настройки термостата. Ресурс: Как отрегулировать температуру водонагревателя
Верхний и нижний термостат можно настроить по-разному.
Таймер можно использовать для контроля разницы температур и экономии денег путем переключения мощности нагрева воды в зависимости от пикового использования раз.Ресурс: Используйте таймер для управления термостатами

Увеличить восстановление путем установки темперирующего бака для пассивного подогрева входящего холодная вода
Темперирующая емкость

Увеличение рекуперация путем установки 2 водонагревателей
2 водонагревателя означают, что имеется больший объем горячей воды, и пользователь меньше вероятность нехватки горячей воды
Ресурс: два водонагревателя

Мнение:
Повышение термостат до 130F — самый простой способ увеличить восстановление. Установка темперирующий резервуар — дополнительная работа, но эффективна для повышения температуры холодной поступающей воды.

Если требуется очень высокое восстановление, подключите дополнительный выключатель и работайте. еще один провод 10 калибра для одновременного операция — лучший способ ускорить выздоровление.
Ресурс: Как подключить одновременный водонагреватель
Преобразование в одновременный — больше работы, но безопаснее, чем повышение температуры воды до 140-150F.

.

Расчет ОВК

Расчеты размера системы HVAC в зале Macalister будет проходить двумя способами. Первый метод будет основываться на оценках кубических футов в минуту и ​​тоннажа, указанных в ASHRAE. Второй способ, что более подробно, предполагает использование программы моделирования Carrier E-20 для расчета нагрузок.

Стандарты оценки ASHRAE:

ASHRAE устанавливает стандарты для оценка кубических футов в минуту и ​​тоннажа в здании.При расходе 20 куб. Футов в минуту на человека стандарт и система повторного нагрева, ASHRAE устанавливает следующие числа:

Расчетная охлаждающая нагрузка (тонны): от 0,25 до 0,35 тонны на 100 квадратных футов общей площади здания

Расчетная тепловая нагрузка (MBH): от 1,5 до 2,5 MBH на 100 квадратных футов общей площади здания

Расчетный кубический фут в минуту: от 75 до 125 кубических футов в минуту на 100 квадратных футов общей площади здания

охлажденной воды, галлонов в минуту: 2.4 галлона в минуту на тонну охлаждение

галлонов горячей воды в минуту: отопление MBH, разделенное на 10

Для наших оценок мы будем использовать середины этих значений, чтобы дать ответ, который не будет ни слишком либеральным, ни слишком консервативен.

Метод оценки ASHRAE для Macalister Зал:

Общая площадь кондиционированных место в Macalister Зал выглядит следующим образом:

28400 футов 2 в подвале

24400 футов 2 в первом этаж

13 500 футов 2 на каждой башне этаж

10,500 футов 2 на факультете клуб

Общая кондиционированная площадь: 117 300 футов 2

Исходя из рассчитанной площади выше и стандартов ASHRAE, изложенных ранее, нагрузки на здание рассчитывается по следующей таблице:

Охлаждающая нагрузка

Нагревательная нагрузка

Всего CFM

Охлажденная вода

Горячая вода

350 тонн

2350 МБХ

117300 куб. Футов в минуту

840 галлонов в минуту

235 галлонов в минуту

Программа Carrier E-20

Программа Carrier E-20 намного точнее, чем упомянутая ранее предварительный расчет.С помощью этой программы рассчитываются нагрузки на здание. с учетом строительных материалов, направленная облицовка, инфильтрация, графики занятости, загрузка оборудования, загрузка людей и др. уставки в системе HVAC. Обрисован ввод данных в программу. ниже.

Температура воздуха в регионе Филадельфия

Сезон

Сухой термостат (F)

Мокрая лампа (F)

Суточный диапазон (F)

Зима

10

НЕТ

НЕТ

Лето

93

75

14

Филадельфия Высота над уровнем моря: 26 футов

Philadelphia Latitude Адрес: 40

Информация о строительных материалах:

В следующих разделах показаны две основные формы конструкции Macalister. Зал.Башня состоит из 6-дюймовой сборной бетонной панели снаружи. большое воздушное пространство и внутреннее пространство из 4-х дюймовых бетонных блоков. Первый пол состоит из кирпича 4 дюйма, с воздушным зазором 1 дюйм и бетона 8 дюймов. блочная стена.

Стена 1-го этажа Секция Башня Стеновая Секция

Из приведенных выше секций стен я рассчитал общее значение U стен. (БТЕ / час / фут 2 / F) в зависимости от используемых материалов и установленных стандартов вперед в ASHRAE.Табличные значения следующие:

Строительство 1 этажа:

Строительные материалы

R-Value (часы x футы 2 x F / BTU)

Значение U (БТЕ / час / фут 2 / фут)

Сопротивление наружному воздуху

0.33

3,03

Лицевой кирпич 4 «

0,43

2,33

Воздушный зазор 1 «

0,91

1,10

8 «CMU

2.02

0,50

Внутреннее сопротивление воздуха

0,69

1,45

Итого

4,38

8,41

Строительство башни:

Строительные материалы

R-Value (часы x футы 2 x F / BTU)

Значение U (БТЕ / час / фут 2 / фут)

Сопротивление наружному воздуху

0.33

3,03

6-дюймовая сборная железобетонная панель

3,22

0,31

Воздушный зазор 6 дюймов

0,91

1,10

4 «CMU

1.11

0,90

Внутреннее сопротивление воздуха

0,69

1,45

Итого

6,26

6,79

Типовая конструкция окна:

Предполагается алюминиевое стеклопакетное окно с терморазрывом и светлыми плафонами. на внутренней.Эти предположения приводят к следующим значениям:

Общее значение U: 0,537 (БТЕ / ч / фут 2 / фут)
Коэффициент затенения: 0,454

Типовая конструкция крыши:

Предполагается монолитная крыша на стальном настиле 22 колеи с изоляцией из плит Р-7. Эти предположения приводят к следующему значению:

Общее значение U:.121 (БТЕ / ч / фут 2 / фут)

Типичная световая нагрузка: 1,5 Вт / фут 2

Типичная нагрузка на людей: 1 человек / 150 футов 2 при выполнении офисной работы:

Явная нагрузка: 245 BTUH
Скрытая нагрузка: 205 BTU

Типичные потери при инфильтрации: 2 воздухообмена в час

Типовая загрузка оборудования: .5 Вт / фут 2

Уставки и коэффициенты безопасности:

Уравнения, используемые E-20 для расчета нагрузок:

1. Нагревательная нагрузка: Q = U x A x T

Где:

Q = Скорость теплопередачи, БТЕ / час
U = Общий коэффициент теплопередачи, БТЕ / час / фут 2 / F
A = Площадь поверхности, через которую тепло потоки, футы 2
T = разница температур, через которую течет тепло, F

Площадь стены рассчитана исходя из высоты пола 12 футов-0 дюймов. в башне и 15′-0 «на первом этаже.

2. Охлаждающая нагрузка: Q = U x A x CLTD c

Где:

Q = Нагрузка на охлаждение для крыши, стекла или стены, БТЕ / час
U = Общий коэффициент теплопередачи для крыши, стекла или стены, БТЕ / час / фут 2 / F
A = Площадь крыши, стекла или стены, футы 2
CLTD c = Скорректированная разница температур охлаждающей нагрузки, F

CLTD c — это измененное значение разницы температур, которая учитывает эффект накопления тепла и запаздывания.

3. Солнечное излучение через стекло: Q = SHGF x A x SC x CLF

Где:

SHGF основан на ориентации и времени года, а SC основан на вид драпировки на окне.

4. Осветительная нагрузка: Q = 3,4 x Ш x BF x CLF

Где:

BF учитывает тепловые потери в балластах люминесцентных ламп и CLF учитывает накопление тепла в осветительных приборах.

5. Нагрузка на людей: Q s = q s x n x CLF, Q l = q l x n

Где:

Q с и Q л = Явное и скрытое тепловыделение, БТЕ / час
q с и q л = Явное и скрытое тепловыделение на человек, БТЕ / час на человека
n = Количество человек
CLF = Коэффициент охлаждающей нагрузки для людей

Carrier E-20 Результаты:

Информация была введена на основе вышеуказанных уставок и уравнений в Программа Carrier E-20 и были получены следующие результаты:

Охлаждающая нагрузка

Нагревательная нагрузка

Всего CFM

Охлажденная вода

Горячая вода

300 тонн

2100 МБХ

куб. Футов в минуту

720 галлонов в минуту

210 галлонов в минуту

.

Испарение с водной поверхности

Испарение воды с водной поверхности — например, из открытого резервуара, плавательного бассейна и т.п. — зависит от температуры воды, температуры воздуха, влажности воздуха и скорости воздуха над поверхностью воды.

Water surface evaporation - swimming pool heat loss

Количество испарившейся воды можно выразить как:

г с = Θ A (x с — x) / 3600 (1)

или

г ч = Θ A (x с — x)

где

г с = количество испарившейся воды в секунду (кг / с)

г ч = количество испарившейся воды в час (кг / ч)

Θ = ( 25 + 19 v ) = коэффициент испарения (кг / м 2 ч)

v = скорость воздуха над водной поверхностью (м / с)

A = площадь водной поверхности (м 2 )

x с = максимальная влажность соотношение насыщенного воздуха при той же температуре, что и поверхность воды (кг / кг) (кг H 2 O в кг сухого воздуха)

x = соотношение влажности воздуха (кг / кг) (кг H 2 O в кг Сухого воздуха)

Примечание! Единицы для Θ не совпадают, так как это эмпирическое уравнение — результат опыта и экспериментов.

Необходимое теплоснабжение

Большая часть тепла или энергии, необходимых для испарения, берется из самой воды. Для поддержания температуры воды — в воду необходимо подводить тепло.

Необходимое количество тепла для покрытия испарения можно рассчитать как

q = h we g s (2)

где

q = подводимое тепло (кДж / с ( кВт))

h we = теплота испарения воды (кДж / кг)

Пример — Испаренная вода из плавательного бассейна

Имеется бассейн 50 м x 20 м с температурой воды 20 o С. Максимальный коэффициент насыщения влажности в воздухе над поверхностью воды составляет 0,014659 кг / кг. При температуре воздуха 25 o C и 50% относительной влажности коэффициент влажности в воздухе составляет 0,0098 кг / кг — см. Диаграмму Молье.

При скорости воздуха над поверхностью воды 0,5 м / с коэффициент испарения можно рассчитать как

Θ = (25 + 19 (0,5 м / с))

= 34.5 кг / м 2 h

Площадь бассейна можно рассчитать как

A = (50 м) (20 м)

= 1000 м 2

Испарение от поверхность может быть рассчитана как

г с = (34,5 кг / м 2 ч ) (1000 м 2 ) ((0,014659 кг / кг) — (0,0098 кг / кг) ) / 3600

= 0,047 кг / с

Теплота (энтальпия) испарения воды при температуре 20 o C составляет 2454 кДж / кг .Подвод тепла, необходимый для поддержания температуры воды в бассейне, можно рассчитать как

q = (2454 кДж / кг) (0,047 кг / с)

= 115,3 кВт

Потери энергии и необходимое количество тепла можно уменьшить на

  • уменьшение скорости воздуха над поверхностью воды — ограниченный эффект
  • уменьшение размера бассейна — не совсем практично
  • уменьшение температуры воды — не комфортное решение
  • снижение температуры воздуха — не комфортное решение
  • увеличение содержания влаги в воздухе — может увеличить конденсацию и повреждение строительных конструкций для закрытых бассейнов
  • удалить влажную поверхность — возможно с пластиковыми одеялами на поверхности воды снаружи время операции.Очень эффективный и часто используемый

Примечание! — во время работы в бассейне может резко увеличиваться испарение воды и необходимое количество тепла.

Чтобы снизить потребление энергии и избежать повреждения строительных конструкций из-за влаги, обычно используют устройства рециркуляции тепла с тепловыми насосами, передающими скрытое тепло из воздуха в воду в бассейне.

Калькулятор испарения с поверхности воды

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *