Максимальная температура водяного теплого пола: какая максимальная и оптимальная температура должна быть у теплого пола

Содержание

Температура водяного теплого пола: какая должна быть

Назначение тёплых полов – создание наиболее благоприятных условий пребывание человека в жилых и общественных зданиях. Комфортная температура внутри помещений достигается различными системами отопления.

Среди таких конструкций большую популярность завоевало устройство т водяного обогрева пола. Какая температура водяного тёплого пола должна быть для создания комфортного пребывания человека в своём жилище? Каким образом можно регулировать температуру поверхности тёплого пола? Постараемся ответить на эти вопросы в данной статье.

Содержание:

  • Зоны обогрева внутреннего объёма помещения
  • Устройство водяных тёплых полов
  • Виды трубопроводов тёплых полов
  • Длина трубопроводов
  • Котёл газовый
  • Коллекторные узлы
  • Управление системой водяных полов
  • Температура нагрева воды в тёплых полах

Зоны обогрева внутреннего объёма помещения

Нагретый воздух от поверхности тёплого водяного пола должен равномерно распределяться по высоте помещения.

Существуют нормы нагрева воздушных масс от температуры тёплых водяных полов.

В таблице указана, какая температура должна быть в разных по высоте зонах внутреннего объёма жилых помещений:

Высота от полаТемпература воздуха
130 см у тёплого пола22оС
2От 30 см до 200 см20оС
3От 200 см и вышеОт 17оС до 18оС

Устройство водяных тёплых полов

Водяной обогрев, встроенный в нижнее перекрытие помещения, не везде возможен.

В многоквартирных домах самостоятельный монтаж таких систем отопления запрещён, если только это не предусмотрено проектом.

Там, где отсутствует центральное газоснабжение и водопровод, делать водяное отопление полов не выгодно, да и технически проблематично.

Самая распространённая схема водяных полов представляет собой замкнутую цепь трубопроводов, соединённых с газовым котлом.

Котёл подключают к газопроводу и центральному водоснабжению.

Виды трубопроводов тёплых полов

Трубы горячего водоснабжения применяют из различных материалов:

  • сшитый полиэтилен;
  • полиуретан;
  • металлопластик;
  • медные трубы.
Сшитый полиэтилен
Устройство труб из сшитого полиэтилена

Сшитый полиэтилен – гибкий материал, позволяющий сгибать трубы под углом 90о, что очень удобно для укладки трубопровода на маленьких площадях (ванная, туалет).

Внутренняя поверхность шланга прочная и гладкая и выдерживает максимум нагрева воды, до 100оС.

Полиуретан

Полиуретановые шланги легкие по весу. Они пригодны для устройства обогрева полов на больших площадях. Такие трубы привлекают потребителей своей демократичной ценой.

Металлопластик

Металлопластиковые трубопроводы – гибкие и прочные шланги. Материал обладает особой прочностью и может прослужить 20 и более лет.

Медные трубы
Медный контур впишется не в каждый бюджет

Медные трубопроводы у тёплого водяного пола практически не имеют недостатков, кроме одного. Из-высокой цены медные трубопроводы доступны только ограниченному контингенту потребителей.

Цветной металл по своим физическим свойствам – идеальный передатчик тепла. Никакая максимальная температура теплоносителя таким трубам не повредит.

При выборе вида труб решающую роль играет соответствие цены и качества изделия.

Длина трубопроводов

Диаметр трубы 17 мм позволит укладывать контур от 90 до 100 м. Контур из труб диаметром 20 мм уже даёт возможность увеличить длину контура до 120 м.

Котёл газовый

Современный рынок бытового оборудования предлагает на продажу большое количество отопительных моделей. Газовые агрегаты реализуют в торговой сети в напольном и настенном вариантах. Настенные котлы менее мощные, чем стационарные аппараты.

Схема отопления теплым полом в частном доме

Для обогрева полов, состоящих из нескольких контуров, и одновременного снабжения горячей водой применяют напольные мощные котлы.

Коллекторные узлы

Устанавливать и настраивать коллекторное оборудование доверяют только профессиональным работникам.

Управление системой водяных полов

Температура тёплого пола может регулироваться вручную кранами коллекторного узла. Наряду с этим устанавливают электронные клапаны, которые регулируют напор подачи теплоносителя в каждом водяном контуре отдельно.

Управление осуществляется со специального щита с дисплеем, на котором отражается информация о том, какая температура нагрева поверхности напольного покрытия имеется в данный момент в определённом помещении.

Информация о температуре тёплых водяных полов подаётся на дисплей термодатчиками, которые устанавливают под каждым контуром обогрева полов.

Температура нагрева воды в тёплых полах

Если разница нагрева будет меньше 5

оС,то это вызовет падение давления воды в контуре. Превышение максимального показателя 15оС приведёт к неравномерному прогреву поверхности напольного покрытия.

Практика показывает, что самый оптимальный вариант разницы нагрева воды тёплого водяного пола на входе и выходе находится в пределах 10 – 12оС.

Оптимальная температура электрических теплых полов

20.01.2018

Важная особенность теплых электрических полов в том, что нагрев пространства происходит снизу вверх.

Поэтому прогретый воздух скапливается не в районе потолка, а на уровне 1. 5-2 метров, причем ниже пояса температура на 3-5⁰С выше, что создает более комфортный микроклимат.

К тому же это позволяет поддерживать влажность на оптимальном уровне.

Какие значения температур указаны в стандартах, как быстро и благодаря чему они обеспечиваются, расскажет эта статья.

Нормы температуры для теплых полов

В СНиП (справочнике строительных норм и правил) есть конкретные требования к температуре поверхности пола. В одном из пунктов отмечена недопустимость превышения значения 35⁰С, так как более высокий уровень может перегреть и финишное покрытие, и отопительную систему.

Комфортной для человека считается температура теплого пола 26-30⁰С.

Ламинат и линолеум имеют свои особенности по терморежиму и при перегреве можгут деформироваться. Для такого материала предельно допустимое значение – 26-28⁰С.

Каждое пространство имеет свои особенности – конфигурацию, тепловые потери, назначение, частоту и конкретные задачи использования.

Все их нужно учесть, рассчитывая основные показатели при проектировании нагревательной системы, а затем и при ее монтаже.

В том числе необходимо учитывать оптимальные значения температуры воздуха для помещений разных типов:

  • Жилая комната: 20-22⁰С;
  • Кухня: 19-21⁰С;
  • Туалет: 19-21⁰С;
  • Ванная, совмещенный санузел: 24-26⁰С;
  • Детские комнаты: 23-24⁰С.

Скорость прогрева кабельных полов

По сравнению с водяными теплыми полами электрополы становятся теплыми значительно быстрее, так как их нагревательные элементы греются практически мгновенно – не более 6-8 минут. Далее идет равномерный обогрев стяжки по всей площади комнаты. При первом запуске на достижение заданного значения температуры пола в среднем уходит 12 часов (при большой площади и толщине стяжки), однако ногам станет теплее уже через 1,5-2 часа.

Инерционность действует и в обратную сторону: если обогрев отключить, современный кабельный пол может сохранять прежний режим еще 10-12 часов.

Скорость нагрева инфракрасных полов

Пленочные и стержневые инфракрасные полы выполняют обогрев пространства посредством прямого излучения, с минимальным прогревом чернового пола и финишного покрытия. Поэтому нагревание происходит быстро: теплоносители выходят на рабочий режим за 10 минут, после чего вся энергия идет только на обогрев и в первую очередь комфортнее становится ногам.

Устройства, управляющие нагревом

Чтобы обеспечить и поддерживать нужную температуру, совсем необязательно управлять нагревом вручную. Наоборот, гораздо чаще для этого используются специальные устройства – терморегуляторы (термостаты), которые бывают двух основных типов: простые механические и многофункциональные программируемые, наподобие модели Thermoreg TI 300. При их работе применяются термодатчики, измеряющие степень обогрева поверхности пола или воздуха.

Как только нужный микроклимат создан – термостат выключает греющие элементы. Если же температура опускается на 2-3⁰С – регулятор снова запускает нагрев. При использовании программируемых терморегуляторов существует возможность задать расписание работы теплого пола. Благодаря этому расход электричества на работу полов снижается на 30-60%, что дает вполне ощутимую экономию.

Если вам необходима консультация – звоните и мы ответим на все вопросы!

Кипящая вода становится все горячее?

Эта запись была опубликована автором Anne Helmenstine (обновлено )


Когда вода начинает кипеть, ее температура остается стабильной.

Знаете ли вы, что происходит с температурой воды, закипающей в кастрюле на сильном огне? Это распространенный научный вопрос, особенно для тестов, потому что знание ответа показывает, насколько хорошо вы понимаете процесс кипения. Ответ заключается в том, что вода достигает температуры кипения и остается там.

Температура кипения воды не везде одинакова. Температура кипения зависит от давления. На уровне моря вода кипит при 100 ° C (212 ° F) и замерзает при 0 ° C (32 ° F). Если вы кипятите воду при более высоком давлении (например, ниже уровня моря), температура кипения будет выше 100 °C. При более низком давлении (как в горах) температура кипения ниже.

Но какой бы ни была температура кипения, когда вода достигает ее и претерпевает фазовый переход в водяной пар (пар), температура перестает расти. Вы можете крутить огонь так сильно, как вам нравится. Вода может бурно кипеть и быстрее превращаться в пар, но горячее она не станет. На самом деле, на микроскопическом уровне могут существовать более прохладные области кипящей воды. Когда пузырьки пара образуются рядом с источником тепла, например, на дне кастрюли, пузырьки газа изолируют воду от тепла. Это не имеет большого значения для домашней кухни, но является важным фактором для промышленного применения.

Вода горячее точки кипения и холоднее точки замерзания

Жидкая вода может быть горячее 100 °C (212 °F) и холоднее 0 °C (32 °F). Нагревание воды выше ее точки кипения без кипения называется перегревом . Если вода перегрета, она может превысить свою точку кипения без кипения. У вас может быть непосредственный опыт с этим явлением, так как оно довольно часто встречается при приготовлении воды в микроволновой печи. Вода, которая очень чистая, без пузырьков воздуха и в гладком сосуде, может перегреться, а затем резко закипеть, если ее потревожить.

Замерзание воды ниже точки замерзания без превращения ее в лед называется переохлаждением . Чтобы испытать это, поместите емкость с водой в бутылке в миску со льдом. Бутилированная вода работает лучше, чем водопроводная, потому что обычно она очищена (дистиллированная или методом обратного осмоса) и содержит минимум твердых частиц и растворенного воздуха. Мелкие частицы действуют как центры зародышеобразования, способствуя замерзанию. Добавьте соль в лед, чтобы понизить температуру. Температура бутылки с водой может упасть ниже точки замерзания, но вода не превратится в лед, пока вы не возьмете ее и не потревожите.

Когда вода превращается в лед, его можно охладить до абсолютного нуля. Когда вода испаряется в пар, пар может быть нагрет до такой степени, что вода распадается на составные атомы. При температуре 3000 °С примерно половина молекул воды распадается на водород и кислород.


Температура воды | Физика Фургон

Категория Выберите категориюО фургоне физикиЭлектричество и магнитыВсе остальноеСвет и звукДвижение вещейНовая и захватывающая физикаСостояния вещества и энергииКосмосПод водой и в воздухе

Подкатегория

Поиск

Задайте вопрос

Последний ответ: 22.10.2007

Q:

Правда ли, что вода (пар и лед) не может нагреваться выше 212 градусов и холоднее 32 градусов?

— Томми
Сиэтл

A:

Неправда, что температура воды может достигать 212 градусов, а холода — 32 градуса. После того, как вода превращается из жидкости в газ (при 212 градусах по Фаренгейту), она может нагреваться намного сильнее. В газовой форме молекулы воды рассредоточены и имеют много места для движения и нагреваются намного сильнее, чем две другие фазы (жидкость и лед).
И вода замерзает при температуре 32 градуса по Фаренгейту. Но на самом деле может стать еще холоднее, вплоть до того, что мы называем абсолютным нулем. Это значение эквивалентно примерно -459 градусам по Фаренгейту. Это когда молекулы воды в основном неподвижны. Надеюсь, что это ответ на ваш вопрос!

(но см. ниже — если вопрос касается жидкой воды, она становится нестабильной вне указанного диапазона температур, при атмосферном давлении. Майк В.)

(опубликовано 22.10.2007)

Дополнение #1: кипение и перегрев

Q:

а как насчет самой воды вода дойдет только до 212, а затем превратится в газ, если только вода не находится в скороварке, вода не может подняться выше 212, или Я ошибаюсь?
— Dan
wapakoneta,oh,us

A:

Вы как бы правы. При температуре выше 212°F при стандартном давлении жидкая вода нестабильна. Он будет очень быстро испаряться с поверхности. Если температура поддерживается постоянной (что требует некоторого подвода тепла, поскольку испарение охлаждает вещи), вся жидкость испарится.
Если температура намного выше 212°F, вода закипит. Это означает, что он будет не просто испаряться с поверхности, а образовывать пузырьки пара, которые затем будут расти внутри самой жидкости. Если в воде очень мало частиц пыли и т. д., этот процесс кипения не происходит до тех пор, пока температура значительно не превысит 212 ° F, поэтому вы можете временно иметь жидкую воду (называемую «перегретой») выше этой точки кипения. Если есть хорошие места зародышеобразования для начала кипения (хорошим примером являются тефлоновые поверхности), вы не можете получить большой перегрев.

вы можете искать на этом и других сайтах по ключевому слову «перегретый».

Mike W.

Lee H

(опубликовано 22. 10.2007)

Дополнение #2: перегрев?

Q:

Хорошо, но почему тогда жидкая вода, открытая в атмосферу, продолжает кипеть в течение нескольких секунд после удаления источника тепла? Это просто из-за остаточного тепла
— Энди (68 лет)
SLC, Юта, США

A:

Вода может быть несколько перегрета, как мы упоминали. Кроме того, к тому времени, когда вода закипит, кастрюля будет горячее, чем 212 ° F, поэтому тепло от нее поступает, чтобы вскипятить еще немного воды.

Майк В.

(опубликовано 17.04.2017)

Дополнение №3: температура воды 6500 F?

Q:

Итак, можете ли вы объяснить мне, как вода может оставаться в среде с температурой 6500 по Фаренгейту и не испаряться!? Потому что я потерялся в этом, и как это вообще имеет какой-то смысл? И надеюсь, я хочу знать ответ на этот вопрос, потому что мне говорят, что я дурак, раз задаю этот вопрос
— Крейг Годфри (33 года)
Римби Альберта

A:

Я понятия не имею, как может существовать жидкая вода при такой температуре. Это намного выше «критической точки», в которой теряется различие между газом и жидкостью. Я почти уверен, что при такой высокой температуре молекулы воды в основном распадаются, так что у вас действительно не будет воды вообще.

Mike W.

(опубликовано 29.08.2017)

Дополнение №4: вода при 212F

Q:

Что делает вода при 212 градусах по Фаренгейту

A:

Кипит.

Mike W.

(опубликовано 01.11.2017)

Дополнение №5: температура льда и воды она кипит) при 100 градусах Цельсия. Далее говорится, что ледяная вода (независимо от количества льда, смешанного с водой) всегда 0 градусов. Всегда ли вода в твердом состоянии имеет температуру 0 градусов по Цельсию? Если я положу лед в морозильник с -15°C, упадет ли температура льда? Или она останется 0 градусов по Цельсию? Итак, чтобы проверить это, я наполнил стакан льдом, а затем добавил достаточно воды, чтобы лед плавал. Мой термометр показывает 0 градусов на дне стакана, где вода.

Но наверху, посреди плавучего льда, написано -1 С. Если мой учебник прав, разве не должно было быть 0 градусов С, где бы ни стоял термометр? Что пошло не так? Я изо всех сил пытаюсь понять эту концепцию, поэтому любое объяснение будет высоко оценено! Примечание: он закипел в 96 C, но я предполагаю, что это из-за атмосферного давления.
— Наташа Р. (17 лет)

A:

Лед определенно может быть намного холоднее 0°C. Даже жидкая вода может быть немного холоднее 0°C какое-то время, пока ей не удастся перейти в состояние кристаллического льда. Мы много обсуждаем это на этом сайте под названием «supercool».

Обычно, когда вы помещаете воду в холодную морозильную камеру, она охлаждается чуть выше 0°C, затем останавливается около 0°C, пока вся вода не превратится в лед, затем продолжаете охлаждение, пока не достигнет температуры морозильной камеры. Если вода необычно свободна от пыли и т. д., она может переохладиться значительно ниже 0°C, прежде чем начнется замерзание.

Mike W.

(опубликовано 29.01.2018)

Дополнение № 6: давление пара

Q:

Откуда водяной пар в воздухе, если он не ниже 100 градусов Цельсия? Я слышал, как люди говорят, что это потому, что вода на самом деле не пар. Если это так, то как жидкость плавает в воздухе?
— Эли Татум (19 лет)
Алабама

A:

Даже при температуре ниже 100°C некоторые молекулы воды покидают жидкость и превращаются в пар. Равновесие достигается, когда их концентрация (плотность водяного пара) достаточно высока, так что скорость возвращения молекул из пара и воссоединения с жидкостью как раз уравновешивает скорость их ухода. Эти молекулы в паре действительно находятся в газовой фазе, мало контактируя друг с другом.

Так что же изменилось при 100°C? При температуре выше 100°C молекулы покидают жидкость так быстро, что равновесие может быть достигнуто только с водяным паром, настолько плотным, что его давление будет выше, чем обычное атмосферное давление.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *