Как провести розетку от щитка: Подключение розетки к автомату в щитке

Содержание

Розетка на DIN-рейку в щиток

Розетка на DIN-рейку — устройство в виде моноблочного штепсельного разъема с унифицированными захватами под DIN-рейку для установки в распределительном щитке.

Это изделие по своей конструкции и функциональным особенностям напоминает обычную электрическую розетку с шириной между контактами согласно стандарту евро.

Единственное значимое отличие в том, что она предназначена для подключения осветительного и другого электрооборудования непосредственно к электрическому щитку. Обычная розетка в таких местах не устанавливается.

Содержание

  • Основное назначение
  • Разновидности DIN-реек
  • Конструкция и характеристики
  • Монтаж
  • Подключение проводов
  • Популярные производители

Основное назначение

Электрощиток состоит из ряда модульных устройств (выключателей, автоматов, индикаторов, розеток т. п.), каждый из которых выполняет определенную функцию.

Щитовая розетка монтируется в электрический щиток для возможности подключения к нему любого электроприбора во время обслуживания и ремонта элементов распределительного устройства. Такую розетку часто используют для подключения потребителей электричества, расположенных близко к щитовой. Нередко во время контрольного осмотра оборудования подключают и переносные светильники.

Розетка на DIN-рейку устанавливается в зданиях различных предприятий и офисных помещениях крупных компаний для создания надежного электрического контакта с сетевой вилкой прибора любой мощности во время обустройства макетных павильонов, испытательных стендов и т. п.

Разновидности DIN-реек

DIN-рейка — специальный профиль из металла (сталь, AL, Cu), который применяется в качестве общепринятого крепежного приспособления для монтажа и демонтажа (при необходимости) штепсельных розеток, электрических счетчиков, дифференцированных автоматов, автоматических выключателей и других электротехнических приспособлений.

Рейка получила название DIN в честь немецкого института стандартизации, где была разработана. Данный стандарт обобщенный — базовый документ, к которому ссылаются при изготовлении электротехнических приборов практически во всех странах мира.

DIN-рейки унифицированы по размерам, имеют отверстия или насечки для крепления изделия или разделения его для получения определенной длины.

Рейки классифицируются на следующие разновидности:

  1. Тип рейки Ω. Это часто применяемая крепежная конструкция, в боковом разрезе напоминающая букву Ω. Многие модульные устройства, включая щитовые розетки, крепятся на рейку марки ТН 35, где 35 мм — ширина реечной полосы. Для крепления клемм применяют подобные рейки уменьшенных габаритных размеров.
  2. Тип рейки С. Изделия этой категории имеют С-образную форму. Нашли широкое применение для крепления электроустановочных изделий, предназначенных для соединения проводов (клеммных колодок).
  3. Тип рейки G. Профиль такого изделия внешне напоминает букву G. Основная область применения — крепление аппаратных зажимов.

Конструкция и характеристики

Особенность внутреннего устройства розеток щитовых на DIN-рейку — пластиковая защелка, благодаря которой устройство надежно крепится к дополнительному профилю — рейке.

Существует несколько разновидностей модульных розеток:

  1. Без заземления. Небольшого размера, шириной 17,5 мм, а значит, занимают в щитке место 1 стандартного модуля. Это их основное преимущество. Применяются для подключения электроприборов, не требующих заземления, незначительной мощности: паяльников, светильников и т. п. Номинальный ток 6А, 10А.
  2. С заземлением. Их ширина значительно больше незаземленных, составляет 2,5 модуля. Благодаря тому, что такие розетки обустроены заземляющими контактами, их применение распространяется на подключение приборов с металлическими составляющими, требующими заземления. Параметр тока составляет 10А и 6А.

Внимание! Мощные электроприборы в разъем розетки без заземления подключать нельзя!

Модульные розетки делят по степени защиты от таких вредных факторов, как влага и пыль. Значение указывается в буквенно-численном виде. К примеру, код IP44, где IP — уровень защищенности от проникновения инородных элементов любого размера в корпус устройства, а 44 — степень его влагозащиты.

Обратите внимание! Если DIB-розетка установлена в щитовой жилого помещения, то достаточно, чтобы ее уровень защиты был не менее IP20. Если же устройство расположено в неблагоприятных условиях — на улице, задымленном или влажном помещении, то степень защиты прибора должна быть не ниже IP44.

Размеры модульных розеток установлены мировым стандартом и находятся в таком диапазоне:

  • длина (с заземлением): 44 мм, 18 мм;
  • высота (с заземлением или без): 45 мм;
  • расстояние между краями: 76 мм, 77 мм;
  • толщина: 64 мм, 66 мм.

Монтаж

Перед тем как начать монтаж электрического гнезда, нужно убедиться, что параметры розетки соответствуют мощности того оборудования, которое предусматривается к подключению.

Если розетка будет установлена на небольшой электрический щиток дома или квартиры, то номинальный ток вполне допустим 6А, 10А.

Если модульный прибор будет установлен для питания мощных электроприборов, необходимых при выполнении работ строительного или ремонтного характера, то его номинальный ток должен быть не менее 16А.

Для примера приведем электрогнездо с заземлением Bemis 1/16A со степенью защищенности IP44. Прочный пластиковый корпус соответствует высокому уровню защиты, что дает возможность применения Bemis 1/16A на производстве.

Последовательность выполнения монтажа модульного электрического гнезда:

  1. Пользуясь отверткой, приподнимите подвижную часть пластикового зажима.
  2. Установите розетку на профиль рейки и отпустите зажим. Щелчок сигнализирует о том, что защелка закреплена, а значит, розетка зафиксирована.
  3. Займитесь подсоединением к ней трех проводов: фазного, нулевого и заземляющего.

Подключение проводов

Подключение щитовой розетки можно проводить до или после монтажа. Если выбран первый вариант, то необходимо обратить внимание на длину проводов: их длины должно хватать для проведения работ, связанных с подключением.

Для выполнения подключения понадобятся зажимы для присоединения электропроводов.

Обратите внимание! Диаметр сечения электропроводов не должен быть меньше указанного на корпусе значения.

Подсоединение проводов можно выполнять в любой последовательности, главное — не перепутать фазный и нулевой провод.

Провод, отвечающий за заземление, в зависимости от электрических схем может подключаться двумя способами: к корпусу щитового шкафа или специально предусмотренными отдельными зажимами.

Популярные производители

Во многих торговых точках представлен шикарный ассортимент электротехнических устройств, в том числе и розеток. Задавшись целью приобрести качественную розетку на DIN-рейку, возникает вопрос: чему отдать предпочтение?

Отметим ряд торговых марок, которые занимают лидирующее место на рынке производителей электротоваров:

  1. Французская компания Legrand. Более 100 лет изготавливает продукцию информационного и электрического назначения.
  2. Крупная французская машиностроительная компания Schneider Electric, которая превосходно зарекомендовала себя как производитель оборудования для распределения и передачи электроэнергии.
  3. Шведско-швейцарская компания АВВ, которая выпускает защитную автоматику для электросетей всевозможного назначения. Признано, что АВВ — лидирующий производитель такой продукции на рынке стран СНГ.
  4. Итальянская компания Bticino, которая производит электротовары высочайшего качества.

Единственный минус всех перечисленных производителей — высокая ценовая политика. Для тех, кто ищут бюджетный вариант электротоваров, рекомендуют следующий перечень торговых марок:

  • Makel;
  • TDM Еlectric;
  • Anam;
  • Lezard;
  • Wessen;
  • GUSI.

Эти производители выпускают качественные электротовары по доступным ценам. Таким образом, покупая розетку на DIN-рейку, вы не понесете особых затрат, но сможете обеспечить удобство обслуживания и ремонта электрооборудования распределительного устройства.

Как сделать розетку на улице на даче и не только


Нередко возникает необходимость использования электроприборов на улице. Например, необходимо подключить к электрической сети новогоднюю гирлянду, светящуюся фигуру или какой-нибудь электрифицированный инструмент.

Установить розетку на улице таким же образом, как и внутри помещения нельзя, так как на открытой местности, то есть вне помещений, на розетку будут воздействовать различные негативные факторы: брызги, капли или струя воды, пыль, а также механическое воздействие. Розетка должна быть надежно защищена от данных факторов. Рассмотрим вопрос о том, как установить розетку на улице.

Первое, что следует сделать – это выбрать место для установки розетки. Штепсельная розетка, предназначенная для установки на открытом воздухе, должна иметь корпус, который имеет максимальную степень защиты – IP65. Но, во всяком случае, это не значит, что розетку нужно устанавливать под открытым небом. При выборе места установки следует отдать предпочтение наиболее безопасному варианту, как с точки зрения возможных механических воздействий, так и прямого воздействия осадков.

То есть розетку следует монтировать на достаточной высоте, чтобы она не была случайно повреждена. Для того чтобы максимально снизить прямое воздействие осадков на розетку, можно выбрать закрытое место, например, под навесом или выступом крыши дома.

Подключение розетки к электропроводке дома

Запитка розетки производится от ближайшего распределительного щитка. Если главный распределительный щиток установлен во дворе дома, то можно подключить кабель для питания розетки в нем. Если же ввод электричества выполнен в щиток, находящийся внутри помещения, то подключение кабеля выполняется от данного щитка. В последнем случае для вывода кабеля из помещения наружу следует обеспечить его защиту в месте перехода через стену отрезком трубы.

Кабель, который будет проходить вне помещения к розетке, должен быть дополнительно защищен гофрированной трубой или металлорукавом. Кабель, который имеет достаточную для наружного монтажа защиту, прокладывается без дополнительной защиты.

Розетка должна монтироваться на негорючие поверхности или, если все-таки требуется установить розетку на горючей поверхности, необходимо обеспечить полную изоляцию монтируемой розетки от этой поверхности.

Также следует обратить особое внимание на правильность подключения кабеля к монтированной розетке. Место подключения кабеля к розетке должно быть герметичным: резиновый уплотнитель корпуса должен плотно прилегать к кабелю. В противном случае заявленная производителем степень защиты корпуса розетки не будет обеспечена.

Обычно на корпусе штепсельной розетки предусматривается два места подключения кабеля аввгнг – внизу и вверху розетки. Для обеспечения максимальной защиты от влаги следует подключать кабель снизу розетки.

Заказать

Следует отметить, что электроприборы, эксплуатируемые на улице, несут в себе большую опасность, чем в помещении. Это связано с тем, что человек при эксплуатации электроприборов может находиться в прямом контакте с землей. Поэтому очень важно обеспечить надежную защиту человека от удара электрическим током.

Необходимо устанавливать розетку с заземляющим контактом и подключить ее к общему контуру заземления дома. Также следует в обязательном порядке установить на линию проводки, которая питает данную розетку, устройство защитного отключения. В случае возникновения утечки тока через поврежденную изоляцию проводки или электроприбора, УЗО защитит не только от удара током, но и предотвратит возникновение пожара.

Розетка рассчитана на определенную нагрузку (мощность). Если в нее будет включен электроприбор большей мощностью, то она повредится. Поэтому для защиты розетки, а также кабеля, который ее питает в распределительном щитке, помимо УЗО необходимо установить автоматический выключатель.

Установка розетки на улице в щитке

Существует альтернативный вариант – установка розетки на улице в щитке. Данный способ актуален в том случае, если требуется установить вне помещения другие элементы. Например, в доме есть трехфазный ввод и в монтированном щитке планируется установить рубильник, зажимы для подключения трехфазного потребителя и розетку для подключения однофазных потребителей.

Характерная особенность данного способа заключается в том, что защиту монтированных в щитке элементов, в том числе и штепсельной розетки, осуществляет сам щиток, корпус которого имеет достаточную для наружной установки защиту, то есть значение не менее IP65.

В данном случае степень защиты корпуса розетки и других, монтируемых в щитке элементов, не играет роли. Она определяется условиями эксплуатации данных элементов. То есть если розетка не будет подвергаться каким-либо механическим воздействиям, то можно выбрать обычную розетку для внутренней установки со степенью защиты IP20.

Какой из двух вышеперечисленных способов выбрать: установить розетку открытым способом или в поместить ее в щиток? В данном случае все зависит от того, для чего предназначена данная розетка.

Если планируется в данную розетку периодически включать электроприборы на небольшой промежуток времени, например, электрифицированный инструмент на время выполнения работ, то можно выбрать любой из двух способов.

Если же в данную розетку будут включаться электроприборы на продолжительное время, например, новогодние уличные украшения (гирлянда, светящиеся фигуры), то лучше установить розетку открытым образом. Розетка в щитке в данном случае не подходит, так как при включении в такую розетку электроприбора сам щиток остается открытым, поэтому защита от внешних негативных факторов не обеспечивается.

pcb — Как подключить экран USB-разъема?

спросил

Изменено 2 года, 1 месяц назад

Просмотрено 113 тысяч раз

\$\начало группы\$

Как проложить экран разъема USB на печатной плате? Должен ли он быть подключен к плоскости GND прямо там, где находится USB, или экран должен быть изолирован от GND, или он должен быть подключен к земле через микросхему защиты от электростатического разряда, высокоомный резистор или предохранитель?

PS. Должен ли я разместить соединения экрана на схеме или просто проложить их на печатной плате?

  • печатная плата
  • usb
  • разъем
  • макет
  • экранирование
\$\конечная группа\$

3

\$\начало группы\$

Чтобы экран работал эффективно, необходимо подключение к заземлению экрана с как можно более низким импедансом. Я думаю, что те, кто рекомендует резисторы, или вообще не подключают его к земле, или строго говорят о вашем цифровом логическом заземлении и предполагают, что у вас есть отдельное заземление экрана. Если у вас металлический корпус, это будет заземление вашего экрана. В какой-то момент цифровое заземление должно соединиться с заземлением экрана. По причинам, связанным с электромагнитными помехами, эта единственная точка должна находиться рядом с вашей областью ввода-вывода. Это означает, что лучше всего расположить разъем USB с любыми другими разъемами ввода-вывода вокруг одной секции платы и разместить экран на точке логического заземления в этом месте.

Есть некоторые исключения из правила одной точки, если у вас есть цельный металлический корпус без каких-либо отверстий, например, несколько точек подключения могут быть полезны. В любом случае, при соединении экрана с землей некоторые могут порекомендовать использовать резистор или конденсатор (или оба), но редко для этого есть разумная причина. Вам нужно соединение с низкой индуктивностью между ними, чтобы обеспечить путь для синфазного шума. Зачем отводить шум через паразитную емкость (например, излучать его в окружающую среду)? Единственная причина, обычно приводимая для такой тактики, — это предотвращение контуров заземления, но вы говорите о USB, контуры заземления, скорее всего, не будут проблемой для большинства приложений USB. Конечно, такая тактика предотвратит появление контуров заземления, но она также сделает вашу защиту практически неэффективной.

\$\конечная группа\$

2

\$\начало группы\$

Херни Отт обсуждает это в своей книге «Электромагнитная совместимость». Вы должны смотреть на это с более широкой картины. IE, что делает щит?

Для низкочастотных сигналов экран используется для защиты передаваемого сигнала. Вы хотите, чтобы радиосигналы линии электропередач/AM/FM не попадали в ваш сигнал, потому что это будет мешать нормальной работе. Поэтому вы не должны связывать GND на обоих концах. Заземляющие контуры вызовут небольшие помехи в вашем сигнале, поэтому контур заземления должен быть разорван. Это не означает, что вы оставляете щит висеть. Вы должны привязать экран кабеля к вашему корпусу, и при необходимости (как в случае с коаксиальным кабелем) вы можете привязать заземление своей цепи к этой же точке. Вы хотите использовать одноточечное заземление как можно чаще для низких частот по вышеуказанным причинам.

Однако для высокочастотных сигналов все наоборот. Обычно это цифровые сигналы на очень высоких частотах. Даже если некоторый шум все же возникнет, цифровая природа электроники, а также фильтрация должны легко поддерживать нормальную работу. Вы хотите уменьшить излучение сигналов данных, а НЕ защитить его от излучения. По этой причине путь с наименьшим импедансом должен быть подключен к экрану на ОБОИХ концах. Да, будут контуры заземления и шум, но это не имеет значения. В случае высокой частоты предпочтительнее многоточечное заземление.

\$\конечная группа\$

\$\начало группы\$

Проверьте, указывает ли производитель вашего USB-чипа, что вам следует использовать. Я почти уверен, что Cypress рекомендует резистор 1 МОм и колпачок 4,7 нФ, соединяющий экран с землей. Два отверстия экрана должны быть соединены очень большой дорожкой (кажется, они предлагали 100 мил?)

\$\конечная группа\$

3

\$\начало группы\$

Возможные противоречия:

Спецификация USB Type-C:

Корпус розетки должен быть соединен с заземляющей пластиной печатной платы.

[Но подключено через что?]

Руководство Cypress по успешному проектированию оборудования EZ-USB®FX2LP™ (ранее — Рекомендации по компоновке печатной платы высокоскоростного USB):

  • Подключите соединение SHIELD к GND через резистор. Это помогает изолировать его и уменьшить электромагнитные и радиопомехи. Держите этот резистор близко к разъему USB. Некоторые эксперименты могут быть необходимы для получить правильное значение.
  • Обеспечьте плоскость для экрана USB на сигнальный слой, примыкающий к плоскости VCC, который не больше, чем USB заголовок.

Рекомендации Intel по проектированию электромагнитных помех для USB-компонентов:

Главный вызов полной скорости Соответствие устройств электромагнитным помехам препятствует высокочастотная энергия от связи с щит.

В полноскоростных устройствах используется экранированный кабель, который требует, чтобы оболочка разъема должна быть привязана к земле самолет. Важно отметить, что наземная плоскость не ведет себя как эквипотенциальная поверхность при высоких частоты. Расположение окончание оболочки разъема к Земная плоскость критична. Связь нужно сделать в самом тихом месте заземления для предотвращения шума от плоскости заземления от муфты до щит. ..

и т. д.

Google для «рекомендаций USB»

\$\конечная группа\$

\$\начало группы\$

Экран не должен быть заземлен. Конечно, он заземлен на принимающей стороне.

\$\конечная группа\$

6

\$\начало группы\$

Я разработал проект на основе технического задания, требующего резистора на 33 кОм, соединяющего экран USB с заземляющей пластиной. Это был проект для радиолюбителей, поэтому моя печатная плата была удобно размещена рядом с чувствительным детектором электромагнитных помех!

В моем случае мне пришлось удалить резистор 33k и закоротить экран USB непосредственно на заземляющий слой моей печатной платы, чтобы устранить электромагнитные помехи.

\$\конечная группа\$

2

\$\начало группы\$

Опасность прямого соединения вашего экрана с землей заключается в том, что если два устройства имеют «земли» с разными потенциалами и существует значительный потенциал постоянного тока от этих источников, это соединение может служить предохранителем между двумя системами питания.

Помните, что конденсатор почти полностью закорочен на своей резонансной частоте и обычно проводит ток в довольно широком диапазоне вокруг этой частоты, поэтому конденсатор между заземлением экрана и заземлением системы часто является необходимым компромиссом.

Я разрабатываю автомобильную шину данных, и некоторые стандарты требуют, чтобы только одно устройство подключало экран непосредственно к земле, а остальные устройства должны делать это через серию RC. Автомобильная шина данных имеет значительно более низкую скорость, чем USB 2.0, но риски должны быть аналогичными. Однако USB 3.0 может быть сложно правильно обслуживать без надежного экранирующего соединения. Это (от 5 до 10 ГГц) выходит за рамки моего текущего опыта проектирования.

\$\конечная группа\$

\$\начало группы\$

Что ж, поскольку, похоже, нам нужен другой ответ, я проголосую за заземление через чип защиты от электростатического разряда, такой как USBLC6. Это хорошо сработало для меня в нескольких проектах — без видимого разрушения компонентов из-за электростатического разряда и без проблем с целостностью данных. Я чувствую, что было бы по крайней мере немного подозрительно, если бы STmicroelectronics производила такой чип и знала, что резистор, конденсатор или короткое замыкание на землю были бы так же хороши.

Я не знаю, то ли это успех, потому что это правильный поступок, то ли просто везение. Учитывая широкий спектр ответов, у меня возникнет соблазн сказать, что никто этого не делает.

На работе мы подключаем разъемы Ethernet прямо к земле. Насколько я знаю, это то же самое, что и рассматриваемая проблема, хотя кабель Ethernet не передает сигнал заземления. Кажется, это работает, и это решил кто-то с большим опытом, чем я.

\$\конечная группа\$

2

\$\начало группы\$

Я использую резистор от 10K до 50K. IIRC Я видел значение 33K в примечаниях к применению FTDI.

Все соединения я бы поместил на схему.

\$\конечная группа\$

1

\$\начало группы\$

См. EMI и USB, в котором рекомендуется заземлять оба конца для предотвращения передачи электромагнитных помех на частотах, используемых для передачи данных USB.

\$\конечная группа\$

\$\начало группы\$

Проблема не только в электромагнитных помехах. Вы должны знать, что каждый раз, когда вы подключаете кабель к разъему, вы получаете разряд разряда ESD. Это опасно для электроники. Поэтому я бы никогда не подключал usb-шильд напрямую к земле.

\$\конечная группа\$

\$\начало группы\$

Я думаю, чип защиты от электростатического разряда и более толстые дорожки с расстоянием между экраном и землей более 100 мил будут хорошим выбором.

Также больше швов вокруг щита обеспечивает клетку Фарадея для шума.

\$\конечная группа\$

\$\начало группы\$

Я разработал несколько плат и всегда использовал чип FTDI (FT245R). В техническом описании четко указано, что экран должен быть подключен к GND. Тот же самый GND чипа, который является заземлением печатной платы!

\$\конечная группа\$

3

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Обязательно, но не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания и подтверждаете, что прочитали и поняли нашу политику конфиденциальности и кодекс поведения.

Платы Arduino

— SparkFun Learn

  • Главная
  • Учебники
  • Платы Arduino

Это руководство

Устарело !

Примечание: Это руководство предназначено только для справки. Большинство щитов, описанных в видеосериале и разделе «Shieldstravaganza», больше не принадлежат SparkFun. Для получения обновленной версии этого руководства перейдите по ссылке ниже.

Посмотреть обновленное руководство: Arduino Shields v2

≡ Страницы

Авторы: Джимблом

Избранное Любимый 17

Что такое щит?

Shields [1] — это модульные печатные платы, которые подключаются к вашей плате Arduino, чтобы придать ей дополнительную функциональность. Хотите подключить Arduino к Интернету и публиковать сообщения в Twitter? Для этого есть щит. Хотите превратить свой Arduino в автономный вездеход? Для этого есть щиты. Существуют десятки (сотни?) экранов, и каждый из них делает вашу Arduino больше, чем просто макетной платой с мигающим светодиодом.

Менеджер каталогов SparkFun RobertC. в восторге от экстравагантного блюда из щитов.

Многие платы Arduino можно штабелировать. Вы можете соединить множество шилдов вместе, чтобы создать «Биг Мак» из модулей Arduino. Вы можете, например, объединить Arduino Uno с голосовым ящиком и WiFly Shield, чтобы создать Wi-Fi Talking Stephen Hawking(TM).

Щиты часто поставляются либо с примером эскиза, либо с библиотекой. Таким образом, они не только просто подключаются к Arduino, но и все, что вам нужно сделать, чтобы они заработали, — это загрузить пример кода в Arduino.

[1] Примечание: Обычно такие платы называются «дочерними платами». Терминология и компоновка зависят от платформы среды и форм-фактора. Шилды для Arduino обычно используют посадочное место Arduino Uno R3. Однако щиты могут иметь различную компоновку в зависимости от архитектуры. Стекируемые печатные платы для Raspberry Pi называются HAT или pHAT, в то время как BeagleBone называет их Capes. В этом руководстве мы сосредоточимся на платах Arduino.

Форм-фактор экрана

Каждый шилд Arduino должен иметь тот же форм-фактор, что и стандартный Arduino. Контакты питания и заземления на одном восьмиконтактном (ранее шести) контактном разъеме и аналоговые контакты на шестиконтактном разъеме рядом с ним. Цифровые контакты закрывают другой край с другой стороны, восьмиконтактный разъем отделен от 10-контактного странным интервалом в 0,5 дюйма. Некоторые шилды также требуют подключения к разъему ICSP Arduino (разъем для программирования 2×3 на конце).

Некоторые шилды используют каждый контакт на Arduino, в то время как другие используют только пару.При соединении шилдов важно убедиться, что они не используют перекрывающиеся контакты.Некоторые шилды обмениваются данными с Arduino через SPI, I 2 C, или Serial, и другие используют прерывания Arduino или аналоговые входы.


Существует великое множество шилдов для Arduino — слишком много, чтобы включать их в это руководство. На следующей странице мы рассмотрим несколько наиболее популярных и уникальных щитов.

Shieldstravaganza

Вот список наиболее популярных и уникальных щитов SparkFun. Это не исчерпывающий список всех шилдов Arduino (для этого зайдите на Shieldlist.org), но это хорошая коллекция. Они рассортированы по полулогическим категориям.

Если вы более склонны к зрению, посмотрите нашу серию видеороликов ShieldStravaganza (часть 1, часть 2 и часть 3). Эти три захватывающих видео до краев наполнены щитами, щитами, щитами, о… и еще щитами.

Прототипирование (и еще немного)

Экраны прототипирования не добавляют много функциональности Arduino, но они помогают другими способами. Эти экраны могут выполнять такие простые действия, как подключение контактов Arduino к винтовым клеммам. В целом они упрощают подключение к Arduino.

  • Комплект ProtoShield — одноимённая звезда этой категории. Этот щит представляет собой большую область для прототипирования. Вы можете приклеить мини-макет сверху или просто припаять непосредственно к области прототипирования экрана.
  • ProtoScrew Shield — аналогичен ProtoShield, но каждый штырек также выведен на винтовую клемму. Удобно для подключения к внешним двигателям или сверхмощным датчикам.
  • Промежуточный щит. Этот щит предназначен для размещения между двумя щитами. Он меняет местами контакты верхнего экрана, чтобы они не мешали друг другу.
  • LiPower Shield — этот экран позволяет питать Arduino от литий-полимерного аккумулятора.
  • Опасный щит — самый крутой щит! Этот щит представляет собой сумасшедшее нагромождение дисплеев, потенциометров и прочих датчиков. Отлично подходит для изучения всех тонкостей Arduino или включения в проекты по микшированию звука.
  • Комплект защиты джойстика. Это превращает ваш Arduino в простой контроллер. Благодаря джойстику и четырем кнопкам это отличный контроллер для роботов.
  • microSD Shield — Arduino имеет ограниченное пространство для хранения, но этот простой в использовании шилд (вместе с библиотекой SD) позволяет использовать много дополнительного хранилища.

Ethernet, Wi-Fi, беспроводная связь, GPS и т. д.

  • Arduino Ethernet Shield — это один из наиболее классических шилдов. Ethernet Shield предоставляет вашему Arduino возможность подключения к всемирной паутине. Также есть отличная библиотека для его поддержки.
  • WiFly Shield — опора Wi-Fi Shield от SparkFun, этот шилд позволяет вашему Arduino подключаться к беспроводным сетям 802. 11b/g. Затем он может действовать как веб-сервер, клиент или и то, и другое.
  • Arduino Wi-Fi Shield — это Arduino Ethernet Shield без проводов. Этот шилд может подключить ваш Arduino к маршрутизатору Wi-Fi, чтобы он мог размещать веб-страницы и просматривать Интернет.
  • Electric Imp Shield — это уникальный WiFi-модуль, который выглядит как SD-карта, но оснащен мощным облачным WiFi-контроллером. Это, вероятно, самый дешевый шилд Arduino с поддержкой WiFi.
  • XBee Shield — XBee не обеспечит вам подключение к Интернету, но они обеспечивают надежное и дешевое средство для беспроводной связи. Вы можете использовать XBee для беспроводного запуска кофемашин, разбрызгивателей, освещения или других бытовых приборов.
  • Cellular Shield с SM5100B — превратите свой Arduino в сотовый телефон! Отправляйте текстовые SMS-сообщения или подключите микрофон и динамик и используйте их вместо своего iPhone.
  • GPS Shield — GPS не так сложен, как вы думаете. С GPS Shield ваш Arduino всегда будет знать, где он находится.

Музыка и звук

  • MP3 Player Shield — превратите свой Arduino в MP3-плеер. Просто вставьте карту µSD, добавьте несколько динамиков, загрузите пример кода, и вы сможете создать свой собственный MP3 Playing Music Box
  • Экран музыкальных инструментов. Используйте протокол MIDI, чтобы превратить Arduino в банк музыкальных инструментов. Он может создавать барабаны, фортепиано, духовые инструменты, медные духовые и всевозможные другие звуковые эффекты.
  • Spectrum Shield — Spectrum Shield прослушивает звук и сортирует его по группам разных частот. Используйте его, чтобы сделать изящный графический эквалайзер.
  • VoiceBox Shield — наделите Arduino механическим роботизированным голосом.

Дисплеи и камеры

  • Экран для цветного ЖК-дисплея. Оснастите Arduino уникальным цветным ЖК-дисплеем с разрешением 128×128 для мобильных телефонов.
  • EL Escudo — Электролюминесцентный провод — это круто! Используйте этот экран, чтобы добавить в свой проект до восьми жил электропроводки. Наконец-то вы можете сделать этот костюм Трона на Arduino.
  • CMUcam — этот модуль камеры добавляет обзор вашему Arduino. Вы можете использовать его для отслеживания капель, чтобы ваш робот не сталкивался с дорожными конусами.

Приводы двигателей

  • Ardumoto Motor Driver Shield — этот классический щит управления двигателем может управлять двумя двигателями постоянного тока.
  • Monster Moto Shield. Если вам нужны более мощные двигатели, чем может выдержать Ardumoto Shield, это следующий шаг вперед.
  • PWM Shield — обычно, когда вы думаете о широтно-импульсной модуляции (ШИМ), вы можете подумать о «затемнении светодиодов», но ШИМ также используется для управления серводвигателями. Этот щит можно использовать для управления вашим сумасшедшим гексаподом с 12 сервоприводами.

Многие экраны поставляются без каких-либо разъемов. Это оставляет их окончательную судьбу открытой для вашей интерпретации (возможно, вы предпочитаете использовать прямые мужские заголовки вместо обычных заголовков с наращиванием). На следующих страницах объясняется, как можно превратить ваш унылый экран без заголовков в полнофункциональный, готовый к подключению модуль.

Необходимые инструменты и материалы

Для сборки экрана требуется пайка. Припой помогает создать хорошее физическое и электрическое соединение. Без припоя соединение между экраном и Arduino будет прерывистым (в лучшем случае). Если это ваш первый опыт пайки, ознакомьтесь с нашим руководством по пайке.

Эти детали понадобятся вам для установки разъемов на ваш шилд:

  • шилд Arduino — подойдет любой шилд. Все щиты Arduino должны иметь стандартный размер Arduino.
  • 4 разъема — количество контактов на разъемах зависит от того, имеет ли ваш шилд более новый R3 или оригинальный макет Arduino.
    • Оригинал: (2) 6-контактных и (2) 8-контактных разъема
    • R3: (1) 6-контактный, (2) 8-контактный и (1) 10-контактный разъем

И эти инструменты вам понадобятся:

  • Паяльник — должен работать самый простой паяльник (ароматы включают США или Европу).
  • Припой — Если вам дорого ваше здоровье, используйте неэтилированный припой. Если вы цените свое время, используйте свинцовый припой.
  • Влажная губка . С ее помощью наконечник утюга будет чистым и блестящим. Подойдет любая влажная губка. Используйте ту, что входит в комплект с подставкой для утюга, или приобретите причудливую латунную губку.

Эти инструменты не являются обязательными, но могут немного облегчить вашу жизнь:

  • Подставка для паяльника. С ее помощью паяльник не будет лежать на полу и на коленях (ой!).
  • Третья рука. Если у вас заканчиваются руки и вы не можете заставить доверяющего члена семьи держать что-то для вас, это подойдет.
  • Фитиль для припоя может пригодиться, если вам нужно удалить припой из соединения.

Подготовка

Прежде чем вы начнете разогревать паяльник, давайте уделим немного времени планированию процесса сборки.

Соответствуют ли ваши разъемы плате Arduino?

С момента появления Arduino до 2012 года все платы Arduino имели одинаковые стандартные размеры: два 6-контактных разъема с одной стороны и два 8-контактных разъема с другой. В последнее время, однако, Arduinos переходят на новую компоновку шилда, называемую 9.0153 R3 след . Эта компоновка имеет 6-контактный и 8-контактный разъемы с одной стороны и 8-контактный и 10-контактный с другой.

Убедитесь, что ваши разъемы соответствуют распиновке вашего шилда! Также подумайте, соответствует ли ваш макет Arduino макету вашего шилда. Плата Arduino R3 должна быть обратно совместима с платой с шилдами более старого размера, однако старые Arduino не полностью совместимы с новыми шилдами посадочного места R3 (что-то вроде втыкания 10 контактов в 8-контактный разъем).

Какой тип заголовка следует использовать?

Есть все виды жаток, но только две из них рекомендуются для установки на щиты: штабелируемые или вилочные.

Прямая охватываемая жатка (слева) и штабелируемая жатка (справа).

Штабелируемые коллекторы особенно удобны для штабелирования щитов. Они также поддерживают возможность подключения перемычки к любому из контактов Arduino. В этом руководстве объясняется, как устанавливать наращиваемые заголовки. Стекируемые разъемы доступны в вариантах с 6, 8 и 10 контактами, или вы можете приобрести разъемы в упаковках для оригинальных экранов или экранов типа R3.

Великолепие штабелируемых жаток. Они позволяют вам сделать беспроводную говорящую Arduino. Обратите внимание, что на верхнем щите есть штекерные разъемы, а на нижнем щите — штабелируемые.

Простые прямые штекерные разъемы также можно использовать для подключения шилда к Arduino. Штыревые заголовки выгодны тем, что они создают низкопрофильный стек при подключении к Arduino. Если вы планируете разместить комбинацию Arduino/shield в корпусе, вам, возможно, придется рассмотреть возможность использования штекерных разъемов. В этом руководстве основное внимание уделяется установке штабелируемого коллектора. Инструкции по сборке охватываемого коллектора см. в разделе «Советы и рекомендации».

Не устанавливайте разъемы с внутренней резьбой, прямоугольные разъемы с наружной резьбой, разъемы с швейцарскими штифтами, круглые разъемы или множество других разъемов, которые могут существовать. Вы действительно должны использовать только разъемы с прямыми, прямоугольными штырями.


Теперь подключите и начните разогревать эти паяльники. Пришло время заняться пайкой!

Шаг 1. Вставьте все четыре разъема

Вставьте все четыре разъема в экран. Убедитесь, что вы вставили их в правильном направлении . Вилки разъема должны входить в верхнюю часть экрана и выходить из нижней части. Эта ориентация имеет первостепенное значение. Не припаивайте ничего до тех пор, пока вы не настроите коннекторы правильно!

Вилки вставлены, максимально выровнены, готовы к пайке.

Вставив разъемы, переверните экран на верхнюю сторону, чтобы он лег на черную гнездовую сторону разъемов. Надеюсь, у вас есть хорошее плоское рабочее место, на котором можно его положить. Попробуйте выровнять все заголовки, чтобы их было точно перпендикулярно плате экрана.

Шаг 2: Припаяйте

Один штифт на каждой колодке

Наконец, время пайки! Важно, чтобы каждый из разъемов располагался под правильным углом 90° к печатной плате. Это гарантирует, что экран скользит прямо на Arduino, и вам не придется при этом сгибать штифты.

Чтобы гарантировать прямолинейность каждой колодки, начните с припайки всего одного штырька к каждому . Если они находятся под странным углом, будет намного проще повторно нагреть только один штифт, регулируя выравнивание.

Одна булавка снята, одна в работе, две осталось. Припаиваем по одному штырьку на каждую колодку.

Четыре паяных соединения готовы, осталось всего 24 (из 28)!

Шаг 3: Проверка выравнивания разъема

Припаяв эти четыре контакта, попробуйте подключить экран к Arduino, чтобы проверить выравнивание разъема. Убедитесь, что ваш Arduino не запитан, пока вы выполняете эту проверку выравнивания.

Временное подключение экрана для проверки совпадения всех контактов.

Все ли в порядке? Штыри не гнутся? Если нет, найдите виновный заголовок и попробуйте его выровнять. Нагрейте соединение утюгом и слегка сдвиньте и отрегулируйте выравнивание жатки. Также будьте осторожны, вытаскивая частично припаянный экран из Arduino. Поскольку все коннекторы не припаяны, вы можете легко их погнуть, когда будете вытаскивать из разъемов Arduino.

Шаг 4: Припаяйте все оставшиеся контакты

Если все ваши разъемы выровнены, вы можете атаковать оставшиеся не припаянные контакты разъема. Когда вы закончите, у вас должно получиться 28 (или 32) блестящих вулкана припоя.

Красивое зрелище. Все запаяно.

Шаг 5. Проверка на наличие коротких замыканий или холодных соединений

После того, как все припаяно, еще раз проверьте на наличие плохой пайки. Какой-либо из ваших суставов сбивался с другого, создавая короткое замыкание? Если это так, вы можете нанести фитиль припоя на соединение или просто попробовать повторно нагреть короткое замыкание и «протолкнуть» припой туда, куда вы хотите.

Ну это просто возмутительно! Остерегайтесь таких закороченных паяных соединений.

Также проверьте наличие соединений холодной пайки — соединение, на котором есть припой, но не совсем соединяет две точки пайки вместе. Холодные стыки не всегда легко заметить; обратите внимание на суставы, которые не такие блестящие, или штифты, которые все еще кажутся ослабленными.

Для этого последнего штифта нужно немного больше припоя. Не совсем похоже, что связь установлена.

Чтобы исправить холодное соединение, повторно нагрейте припой на штифте и добавьте еще немного.

Шаг 6: Подключите!

Обычно рекомендуется выключать (отключать) плату Arduino перед подключением к ней шилда. Будем надеяться, что все контакты все еще хорошо выровнены, и экран просто скользит прямо в Arduino. Будьте осторожны, чтобы не погнуть какие-либо штифты при вставке, и убедитесь, что все они входят в соответствующие гнездовые разъемы.

Это приятное ощущение, когда экран вставляется прямо в Arduino

Советы по сборке

На предыдущей странице сборки должно быть подробно описано все, что вам нужно знать о простой установке коллектора экрана. Однако есть несколько хитростей, которые мы усвоили по пути. ..

Использование старого щита для облегчения выравнивания

Проще всего испортить сборку щита при выравнивании каждого из этих заголовков. Лучше не припаивать стекируемые разъемы, пока шилд подключен к Arduino, поэтому обычно лучше всего подходит метод, описанный в разделе «Сборка». Если у вас завалялся запасной щиток, вы можете воспользоваться еще одной маленькой хитростью, используя его в качестве приспособления для выравнивания жатки.

Начните с подключения всех жаток к вашему запасному зажимному приспособлению.

Зеленый щит будет использоваться в качестве приспособления. Сначала вставьте в него стекируемые заголовки.

Затем вставьте разъемы в экран, который нужно припаять, и припаяйте их все. Предполагая, что запасной экран хорошо выровнен (вы можете сначала проверить это), он должен обрабатывать все выравнивание ваших новых заголовков.

Кондуктор должен правильно выровнять все жатки. Припой прочь!

Установка штекерных разъемов

Если вам важнее установка экрана меньшего профиля, чем возможность штабелирования экранов и подключения перемычек, можно использовать штекерные разъемы.

В каком-то смысле штекерные разъемы легче выравнивать и устанавливать, потому что вы можете использовать Arduino в качестве приспособления. Начните с вставки заголовков в Arduino.

Компания RedBoard производит специальное приспособление для выравнивания жаток.

Затем выровняйте и подключите экран и припаяйте.

Экран с разъемами, готовый к пайке. Мы можем доверять Arduino, чтобы выстроить для нас штекерные разъемы.

Будьте осторожны, используя этот метод, не оставляйте утюг на контактах слишком долго, иначе вы рискуете сжечь разъемы Arduino. Если вы особенно беспокоитесь о том, чтобы сжечь гнездовые разъемы Arduino, вы можете припаять только один контакт к каждому разъему, снять экран и припаять остальные.

Ресурсы и дальнейшее развитие

Теперь, когда у вас есть эти знания, вы можете согнуть практически любой шилд Arduino по своему желанию. Если вы заинтересованы в дальнейшем изучении мира щитов, ознакомьтесь с категорией Arduino Shield на SparkFun.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *